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Chapetr 1 :Vector Spase

Definition 1.1.1

Real vector spases :
A real vector space V is a set of objects,called vectors together with two operations

called
addition and scalar multiplication that satisfy the ten axioms listed below:
i) If x ∈ V and y ∈ V then x  y ∈ V (closure under addition).
ii) For all x,y and z in V
x  y  z  x  y  z (associative law of vector addition)

iii)|There is vector 0 ∈ V s.t for all x ∈ V
x  0  0  x  x (0 is the additive identity )

iv) If x ∈ V ∃ − x ∈ V s.t
x  −x  −x  x  0 (−x is the additive inverse of x)

v) If x and y ∈ V then
x  y  y  x (commutative law of vector addition)

vi) If x ∈ V and  is a scalar,
then x ∈ V (colsure under scalar multiplicution)
vii) If x,y ∈ V and  scalar,
then x  y  x  y (first distributive law)
viii) If x ∈ V,, scalars ,
then   x  x  x (second distributive law)
ix) If x ∈ V and , scalars ,
then x  x (associative law of scalar multiplication)
x) For every vector xV,1x  x (the scalar 1 is called

a multipticalive identity)

Example (1):
let V  Rn  x1,x2, . . . . . . , xn : xi ∈ R, for i  1,2, . . . . , n
V  Rn satisfy all axioms of a vector space.

Example (2):
let V  Pn the set of all polynomials with real coefficients of degree less than or equal

to n if
p ∈ Pn ,then
px  anxn  an−1xn−1 . . . . . . . . . .a1x  a0
qx  bnxn  bn−1xn−1 . . . . . . . . . .b1x  b0
px  qx  an  bnxn  an−1  bn−1xn−1 . . . . . . .a1  b1x  a0  b0
0  0xn  0xn−1  0xn−2 . . . . . .0x  0
−px  −anxn − an−1xm−1 −. . . . . . . . . .−a1x − a0
px  anxn  an−1xn−1 . . . . . . . . . .a1x  a0
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Theorem 1.1.2
let V be a vector space (0 is zero vector)(x any vector), then
i) 0  0 for every real number 
ii) 0x  0 for every x ∈ V
iii) If x  0 then   0 or x  0 (or both)
iv) −1x  −x for every x ∈ V

1.2 : Sub spaces

Definition 1.2.1
let H be a nonempty subset of a vector spase V and suppose that H is it self a vector

space
under the opertions of addition and scalar multiplication defined on V.
Then H is said to be a subspase of V.

Theorem 1.2.2
A nonempty subset H of the vector spase V is a subspace of V
if the two closure rules hold:
i) If x ∈ H and y ∈ H , Then x  y ∈ H
ii) If x ∈ H, Then x ∈ H for every scalur  .

Every vector spase V contain two proper subspace 0 and V.

Example (3)
let V  x,y : x,y ∈ R  R2

W  x,2x : x ∈ R is a supspace of R2.prove?

1.3: Linear Dependence and Independence :

Definition 1.3.1
* let v1, v2, . . . . , vn be n vectors in a vector space V.
Then the vector are said to be linearly dependent if there
exist n scalars c1, c2, . . . . . , cn not all zero such that

c1v1  c2v2 . . . . . .cnvn  0

not all ci  0.
* If the vectors are not linearly dependent, they are
linearly independent , if

c1v1  c2v2 . . . . .cnvn  0
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it holds for c1  c2 . . . . . . cn  0.
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1.4 : Basis and Dimension :
A set of vector v1,v2, . . . . . . , vn form a basis for V if :
i) v1,v2, . . . . . . , vn is linearly independent .
ii) v1,v2, . . . . . . , vn spans V.

Definition 1.4.1:
If the vector space V has a finite basis , then the dimension of V is the number of

vector in the basis
and V is called a finit dimensional vector space.otherwise V is called an infinite

dimensional vector space .
If V  0 , then V is siaid to be zero dimensional .

1.5 : Coordinates and change of Basis :

Definition 1.5.1:
let B  v1,v2, . . . . . . , vn be a basis for a vector space V and x a vector in V such that

x  c1v1  c2v2 . . .cnvn

Then the scalars c1, c2, . . . . . , cn are called the coordinate of x relative to the basis B
The coordinate of x relative to B is the vector in Rn denoted by

xB  xB  c1, c2, . . . . . , cn.

Example (4)
Find the coordinate vector of x  −2,1,3 in R3 relative to the standrad basis
S  1,0,0, 0,1,0, 0,0,1
x  −2,1,3  c11,0,0  c20,1,0  c30,0,1

 −21,0,0  10,1,0  30,0,1
xB  −2,1,3.

Example (5)
Find the vector x in R2 relative to the nonstandrad basis B  1,0, 1,2 where
xB  3,2 and Find the coordinate vector of x relative to the standrad basis
B‵  1,0, 0,1
xB  3,2

x  31,0  21,2  5,4
5,4  51,0  40,1
so xB‵  5,4.
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1.5.2 Change of basis in Rn

The procedure demonstrated in EX(5) is called change of basis That is we were given
the coordinat of

a vector relative to are basis B and asked to finite the coordinates relative to another
basis B‵ .

In this case we need to know the following :
P is the transition matrix from B‵ to B
xB‵ is the coordinate matrix of x relative to B‵ .
xBis the coordinate matrix of x relative to B .
Multiplication by the transition matrix P changes the coordinate matrix relative to B‵

into a coordinate matrix relative to B .
That is

PxB‵  xB

change of basis from B‵ to B
To preform a change of basis from B to B‵,we use the matrix P−1 (the transition matrix

from B to B‵ )

xB‵  P−1xB

change of basis from B to B‵.

Theorem 1.5.3:
If P is the transition matrix from a basis B‵ to a basis B in Rn, then P is invertible
and the transition matrix from B to B‵ is given by P−1.

Theorem 1.5.4:
let B  v1,v2, . . . . . . , vn and B‵  u1,u2, . . . . . . , unbe two basis forRn

then the transition matrix P−1 from B to B‵ can be found by using
Gauss-Jordan elimination on the n  2n matrix B‵B as following

B‵ | B  In | P−1

B | B′  In | P

Example (6):
Find the transition matrix from B to B‵ for the following bases in R3

B  1,0,0, 0,1,0, 0,0,1 and B‵  1,0,1, 0,−1,2, 2,3,−5

Solution :
We want to find P−1?

B 

1 0 0
0 1 0
0 0 1

, B‵ 

1 0 2
0 −1 3
1 2 −5
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B‵B 
1 0 2
0 −1 3
1 2 −5







1 0 0
0 1 0
0 0 1



1 0 2
0 1 −3
0 2 −7







1 0 0
0 −1 0
−1 0 1

1 0 2
0 1 −3
0 0 1







1 0 0
0 −1 0
1 −2 −1



1 0 0
0 1 0
0 0 1







−1 4 2
3 −7 −3
1 −2 −1

∴ P−1 

−1 4 2
3 −7 −3
1 −2 −1

Note:

a) When B is the standrad basis
B‵ | B to In | P−1 becomes

B‵ | In  In | P−1

i.e
B‵−1  P−1 standrad basis to nonstandrad basis

b) When B‵is the standrad basis
B‵ | B to In | P−1 becomes

In | B  In | P−1

i.e
P−1  B nonstandrad basis to standrad basis.
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1.5.5 coordinate Representation in general
n-Dimensional spaces

Example (7):
Find the Coordinate vector of p  3x3 − 2x2  4 relative to the standrad basis of
P3,S  1,x,x2, x3
p  41  0x  −2x2  3x3
ps  4,0,−2,3

Example (8):

Find the Coordinate vector of x 

−1
4
3

relative to the standrad basis of M3,1

S 

1
0
0

,
0
1
0

,
0
0
1

x 

−1
4
3

 a
1
0
0

 b
0
1
0

 c
0
0
1

xS  −1,4,3.

Example (9):

Consider the basis B 
1
0

,
0
1

,B ′ 
1
1

,
2
1

a) Find the transition matrix from B to B ′ .

b)Find vB ′ if v 
7
2

.

Solution :
u1  au1

′  bu2
′
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1
0


a
a


2b
b

1
0


a  2b
a  b

b  1,a  −1

u1 B ′ 
−1
1

u2  cu1
′  du2

′

0
1


c
c


2d
d

d  −1,c  2

u2  
2
−1

∴ P−1 
−1 2
1 −1

To find vB ′ we need to find vB

7
2

 a
1
0

 b
0
1

 a  7,b  2

vB 
7
2

vB ′  p−1vB
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−1 2
1 −1

7
2


−3
5

if we want to find P we
u1
′  au1  bu2

1
1

 a
1
0

 b
0
1

 a  1,b  1

u1
′ 

1
1

u2
′  cu1  du2

2
1

 c
1
0

 d
0
1

 c  2,d  1

u2
′

B
 2

1 

∴ P 
1 2
1 1

P−1P 
−1 2
1 −1

1 2
1 1


1 0
0 1

 I

Example (10):

let B 
3
1

,
2
−1

and B ′ 
2
4

,
−5
3

be two basis of R2

if x B 
7
4

write x in terms of the vectors in B ′ .

Solution :

3
1

 a
2
4

 b
−5
3

 a  7
13 , b  −5

13
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u1 B ′ 
7
13
−5
13

2
−1

 c
2
4

 d
−5
3

 c  1
26 , d  −5

26

u2 B ′ 
1
26
−5
26

∴ P−1 
7
13

1
26

−5
13

−5
13

xB ′  P−1xB 
7
13

1
26

−5
13

−5
13

7
4

 1
26

14 1
−10 −10

7
4

 1
26

102
−110


51
13
−55
13

x  51
13 2,4 − 55

13 −5,3  377
13 , 39

13 .

1.6 :Applications of vector spaces :

1.6.1 : Linear differential equations

A linear differential equation of order n is of the form
yn  gn−1xyn−1 . . .g1xy1  g∘xy  fx.

where g1,g2, . . . , gn and f are functions of x with a common domain .

if fx  0 the equation is homogeneous.
otherwise its nonhomogeneous.

Afunction y is a solution of the linear differential equation if the equation is satisfied

when y
and its first n derivatives are substituted into the equation.
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Example (11):
Show that both y1  ex and y2  e−x are solutions of the second order linear

differential equation
y ′′ − y  0

Solution :
For the function y1  ex we have y1

′  ex,y1
′′  ex

y1
′′ − y1  ex − ex  0

so y1 is a solution of the S.O.L.D.equation

For y2  e−x y2
′  −e−x, y2

′′  e−x

y2
′′ − y2  e−x − e−x  0

so y2 is asolution of the given L.D. equation.

From last example we see that in the vector space C ′′−, of all twice differentiable

function defined on the entire real line .
the two sol. y1  ex and y2  e−x are linearly independent . This mean that the only sol.

of
c1y1  c2y2  0 is valid for all c1  c2  0
Also every linear combination of y1 and y2 is also a solution of the given L.D.eq.
let y  c1y1  c2y2 then
y  c1ex  c2e−x

y ′  c1ex − c2e−x

y ′′  c1ex  c2e−x

substituting into y ′′ − y  0
y ′′ − y  c1ex  c2e−x − c1ex  c2e−x  0
Thus y  c1ex  c2e−x is a solution.

1.6.2 :Solution of a linear Homogeneous Differential equation :
Every nth order linear homogenous differential equation

yn  gn−1xyn−1 . . . .g1xy ′  g∘xy  0
has n linearly independent solutions , moreover , if y1,y2, . . . , yn is a set of L.I.N.

solution ,
then every solution is of the form

y  c1y1  c2y2 . . .cnyn     *
where c1, c2, . . . , cn are real numbers.

we call * the general solution.

1.6.3 : Definition of the Wronskian of a set of functions :
let y1,y2, . . . , ynbe a set of functions each of which possesses n-1 derivatives on an
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interval I . The determinant

wy1,y2, . . . , yn 

y1 y2 . . . . yn

y1
′ y2

′ . . . . yn
′

   

y1
n−1 y2

n−1 . . . . yn
n−1

is called the wronskian of the given set of functions.

Remark :
The wronskian of a set of functions is named after the mathimatician Josef Maria

Wronski.

Example (12):
Find the wronskian of a set of functions.
a) 1 − x,1  x,2 − x is

w 

1 − x 1  x 2 − x
−1 1 −1
0 0 0

 0

b) x,x2,x3

w 

x x2 x3

1 2x 3x2

0 2 6x
 x12x2 − 6x2 − 6x3 − 2x3  6x3 − 4x3  2x3

The wronskian in (a) is said to be identically equal to zero because its zero for any
value of x.

The wronskian in (b) is not identically equal to zero because values of x exist for which
this wronskian is nonzeros.

Theorem (1.6.4) Wronskian Test for linear independence:
Let y1,y2, . . . . . . , yn be a set of n solution of an nth order linear homogeneous

differential equation
this set is linearly independent iff the wronskian is not identically equal to zero.
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Example (13):
Determine whether 1,cosx, sinx is a set of linearly independent solution of the linear

homogeneous
differential equation y‵‵‵  y‵  0.

Solution :
y1  1 y2  cosx y3  sinx
y1
‵  0 y2

‵  − sinx y3
‵  cosx

y1
‵‵  0 y2

‵‵  −cosx y3
‵‵  − sinx

y1
‵‵‵  0 y2

‵‵‵  sinx y3
‵‵‵  −cosx

for y1we get
y‵‵‵  y‵  0  0  0
for y2 we get
y‵‵‵  y‵  sinx − sinx  0
for y3 we get
y‵‵‵  y‵  −cosx  cosx  0
so 1,cosx, sinx is a solution of the H.D.L.equation.
Now we test for L.I.N

w 

1 cosx sinx
0 − sinx cosx
0 −cosx − sinx

 sin2x  cos2x  1

so w is not identically equal to zero.we conclude the set 1,cosx, sinx is L.I.N.
since the set consists of 3 L.I.N ;solutions of a thired order linear homogeneous

differential equation
we conclude that the general solution is
y  c1  c2 cosx  c3 sinx.
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PROBLEM SET I

(1) Find the length of the given vector
(i) v  4,3
(ii) v  1,0,0

(iii) v  4,0,−3,5

(2) Find (a) ‖u‖, (b) ‖v‖,and (c) ‖u  v‖

(i) u  1, 1
2 , v  2, −1

2 
(ii) u  0,1,−1,2, v  1,1,3,0

(3) Find a unit vector (a) in the direction of u and (b) in the direction opposite that of u.
(i) u  3,2,−5
(ii) u  1,0,2,2

(4) For what values of c is ‖c1,2,3‖  1?

(5) Find the vector v with the given length that has the same direction as the vector u.
‖v‖  2, u   3 ,3,0.

(6) Given the vector v  8,8,6, find u such that

(a) u has the same direction as v and one-half its length.
(b) u has the direction opposite that of v and one-fourth its length.

(7) Find the distance between u and v
(i) u  3,4, v  7,1
(ii) u  1,1,2, v  −1,3,0

(8) Find (a) u  v, (b) u ∙ u, (c) ‖u‖2,
(d) u ∙ vv,and (e) u ∙ 2v

(i) u  3,4, v  2,−3
(ii) u  2,−3,4, v  0,6,5
(iii) u  4,0,−3,5, v  0,2,5,4

(9) Find u  v ∙ 2u − v, given that
u ∙ u  4, u ∙ v  −5,and v ∙ v  10.

(10) Verify the Cauchy-Schwarz Inequality for the given vectors.
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u  3,4 v  2,−3

(11) Find the angel  between the given vectors
(i) u  1,1, v  2,−2

(ii) u  1,1,1, v  2,1,−1.

(12) Determine all vectors v that are orthogonal to the given vector u.
(i) u  0,5
(ii) v  4,−1,0

(13) Determine wether u and v are orthogonal ,parallel,or nither.
(i) u  4,0, v  1,1
(ii) u  0,1,6, v  1,−2,−1

(14) Verify the Triangle Inequality for the given vectors.
u  4,0, v  1,1

(15) Verify the pythagorean Theorem for the given vectors.
u  1,−1, v  1,1

(16) Prove that if u is orthogonal to v and w, then u is orthogonal to cv  dw for any
scalars c and d.

(17) You are given the coordinate vector of x relative to a nonstandrad basis B.
Find the coordinate vector of x relative to the standrad basis in Rn.

(a)B  2,−1, 0,1 , xB  4,1
(b)B  1,0,1, 1,1,0, 0,1,1 , xB  2,3,1

(18) Find the transition matrix from B to B‵

(a) B  2,4, −1,3 , B‵  1,0, 0,1
(b) B  1,0,2, 0,1,3, 1,1,1, B‵  2,1,1, 1,0,0, 0,2,1

(19) (a) In Ex (18) (a) find xB given xB‵  −1,3
(b) In Ex (18) (b) find xB given xB‵  1,2,−1

(20)Find the coordinate vector of p relative to the standrad bassis in P2
p  x2  11x  4.
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Problem set II

(1)Find the wronskian for the given set of functions
(a) ex, e−x (b) 1,ex, e2x (c) x, sinx, cosx

(2)Test the given set of solutions for linear independence and find the general solution
(a) y‵‵  y  0, solution sinx, cosx
(b) y‵‵‵  4y‵‵  4y‵  0, solution e−2x, xe−2x, 2x  1e−2x.
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ChapterII
Inner Product Spaces

2.1 Lenght and Dat product in Rn

In Ch.I its mentioned that vectors in the plane can be defined by a directed line
segments having

a certain length and direction . In this section we use Rn as a model is define these and
other geometric

properties (such as distance and angle) for vectors in Rn .
Definition 2.1.1:

The length of a vector v  v1,v2, . . . . . . , vn in Rn is given by

||v|| v1
2  v2

2 . . . .vn
2

Remark 2.1.2:
- The length of a vector is called its norm.
- If ||v||  1 then the vector v is called the unit vector.
- ‖v‖ ≥ 0 , ‖v‖  0 iff v is the zero vector.

Each vector in the standard basis for Rn has length 1 and is called the standard unit
vector in Rn.

we denote the standred unit vectors in R2 and R3 as follows:

i, j  1,0, 0,1
i, j, k  1,0,0, 0,1,0, 0,0,1

Example (1):
a) Find the length of the vector v  0,−2,1,4,−2 in R5

‖v‖  0  −22  12  42  −22

 0  4  1  16  4  25  5

b) Find the length of the vector v  2
17

, −2
17

, 3
17

in R3

‖v ‖  2
17

2
 −2

17

2
 3

17

2
 4

17  4
17  9

17  17
17  1

v is a unit vector.

Note:

Two nonzero vectors u and v in Rn are parallel if one is a scalar multiple of the other
i.e, u  cv
a) If c  0 then u,v have the same direction.
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b) if c  0 then u,v have opposite direction.

Theorem 2.1.3:
Let v be a vector in Rn and c a scolar, then

‖cv ‖  c ‖v ‖,

where c is the absolut value of c.

Proof :
cv  cv1, cv2, . . . . . , cvn

‖cv ‖  cv12  cv22. . . . . . .cvn2

 c2v1
2  v2

2. . . . . .vn
2

 c v1
2  v2

2. . . . . . .vn
2

 c ‖v ‖.

Theorem 2.1.4:
If v is a nonzero vector in Rn , then the vector u  v

‖v‖
has length L and has the same direction as v. we call u , the unit vector in the direction

of v.

Proof :
Since v is nonzero so ‖v ‖ ≠ 0
Thus 1

v
is positive

let u be a positive sclaler multiple of v
u  1

‖v‖ v

u  v1,v2,.......,vn 

v1
2v2

2...........vn2

‖u ‖  v1
2

v1
2v2

2.....vn2
 v2

2

v1
2v2

2....vn2
. . . . . . . . vn2

v1
2v2

2.........vn2

 v1
2v2

2..............vn2

v1
2Vv.............vn2

‖u ‖  1  1

Remark 2.1.5:
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The process of finding the unit vector in the direction of v is called normalizing the
vector v.

Example (2):
Find the unit vector in the direction of v  3,−1,2 and verify that this vector has

lenght 1.

Solution :
The unit vector is u  v

v

u  v
‖v‖  3,−1,2

914
 1

14
3,−1,2  3

14
, −1

14
, 2

14

‖u‖  9
14  1

14  4
14  14

14  1  1
u is a unit vector

Definition 2.1.5:
The distance between two vectors u and v in Rn is

du,v  ‖u − v‖

properties of d u,v :
(1) d u,v ≥ 0
(2) d u,v  0 iff u  v
(3)d u,v  d v,u

Example (3) :
Find the distance between u  0,2,2 and v  2,0,1 is
d u,v  ‖u − v ‖

 ‖ 0 − 2 , 2 − 0 , 2 − 1 ‖

 −22  22  12

 4  4  1  9  3

Definition 2.1.7:
The dot product of u  u1,u2, . . . . . , un and v  v1,v2, . . . . . . vn
in Rn is the scalar quantity

u  v  u1v1  u1v2 . . . . . .unvn

which is a scalar not another vector

Example (4):
Find the dot product of u  1,2,0,−3 and v  3,−2,4,2
u  v  13  2−2  04  −32

 3 − 4  0 − 6  −7
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Theorem 2.1.8:
Properties of dot product

if u,v and w are vectors in Rn and c is a scalar, then the following properties are true
(1) u  v  v  u
(2) u  v  w  u  v  u  w
(3) c u  v  cu  v  u  cv
(4) v  v  ‖v ‖2

(5) v  v ≥ 0 and v  v  0 iff v  0

Proof :
(Home worke )

if Rn is combined with the standard operations of vector addition, scalar multiplicatin,
vector length and the dot product its called the Euctidean n-space.

Example (5):

Given two vectors u and v in Rn such that u  u  39 , u  v  −3 , v  v  79
evaluate u  2v  3u  v

Solution :
u  2v  3u  v  u  3u  v  2v  3u  v

 u  3u  u  v  2v  3u  2v  v
 3u  u  u  v  6v  u  2v  v
 3u  u  7u  v  2v  v
 339  7−3  279
 254

Theorem 2.1.9: (( The Cauchy-Schwarz Inequality ))
If u and v are vectors in Rn , then

|u  v| ≤ ‖u‖‖v‖

where |u  v| denotes the absolute value of u  v.
Example (6):

Verify Cauchy-Schwarz Inequality for u  1,−1,3 and v  2,0,−1
u  v  2  0 − 3  −1
‖u‖  1  1  9  11
‖v‖  4  0  1  5

|u  v| ≤ ‖u‖‖v‖

|−1|  1 ≤ 11 5
≤ 55  7.4

Definition 2.1.10:
The angle  between two nonzero vectors in Rn is given by
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cos  u  v
‖u‖  ‖v‖ , 0 ≤  ≤ 

we don’t define the angle between zero vectors and other vector.

Example (7):
Find the angle  between u  −4,0,2,−2 and v  2,0,−1,1

cos  uv
‖u‖‖v‖  −80−2−2

24 6
 −12

144
 −1

∴    so u , v are opposite direction because u  −2v

Not that because ‖u‖ and ‖v‖ are always positive u , v and cos will always have the
same sign ,

Moreover since the cosine is positive in the first quadrant and negative in second
quadrant ,

the sign of the dot product of two vectors can be used to determine whether the angle
between them is acute or obtuse as shown.

Definition 2.1.11:
Two vectors u and v in Rn orthogonal if

u  v  0

Even though the angle between zero vector and another vector is not defined ,
its convenient to extend the definition of orthogonality to include the zero vector.
In other words , we say that the vector 0 is orthogonal to every vector

Example (8):
a) the vector u  1,0,0 and v  0,1,0 are orthogonal
since u  v  10  01  00  0

b) the vector u  3,2,−1,4 and v  1,−1,1,0 are orthogonal
since u  v  31  2−1  −11  40  3 − 2 − 1  0

Example (9):
Determine all vectors in Rn that are orthogonal to u  4,2
let v  v1,v2 be orthogonal to u , then

u  v  4,2  v1,v2
 4v1  2v2  0

∴ 2v2  −4v1
v2  −2v1  −2t

let v1  t
v  v1,v2  t,−2t  t1,−2 , t ∈ R
we can use Cauchy-Schwarz Inequality to prove
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Theorem 2.1.12: (( The Triangle Inequality))
if u and v are vectors in Rn , then

‖u  v‖ ≤ ‖u‖  ‖v‖

Theorem 2.1.13: (( Pythagoream Theorem))
if u and v are vectors in Rn , then u and v are orthogonal iff

‖u  v‖2  ‖u‖2  ‖v‖2
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2.2 : Inner product spaces
Here we extends last concepts one step to general vector spaces we accomphih this by
using the notion of an Inner product of two vectors the dot product in Rn is called The

Euclidean Inner product
u  v  dot product (( Euclidean Inner product in Rn))
〈u,v  general Inner product for vector space V.

Definition of Inner product 2.2.1:
let u,v and w be vectors in vector space V , and let c be any scalar.
An Inner product on V is a function that associates a real number 〈u,v with
each pair of vectors u and v and satisfies the following axioms:
1)〈u,v  〈v,u
2)〈u,v  w  〈u,v  〈u,w
3) c〈u,v  〈cu,v
4) 〈v,v ≥ 0 and〈v,v  0 iff v  0

A vector space V with Inner product is called An Inner Product Space
The Euclidean Inner product is the most important Inner product on Rn

Example (10):
Show that the following function defined an Inner product on Rn

〈u,v  3u1v1  2u2v2

Solution :
1) 〈u,v  3u1v1  2u2v2

 3v1u1  2v2u2
 〈v,u

2) 〈u,v  w  3u1v1  w1  2u2v2  w2
 3u1v1  3u1w1  2u2v2  2u2w2
 3u1v1  2u2v2  3u1w1  2u2w2
 〈u,v  〈u,w

3) 〈ku,v  3ku1v1  2ku2v2
 k3u1v1  2u2v2
 k〈u,v

4) 〈u,u  3u1u1  2u2u2
 3u1

2  2u2
2 ≥ 0

〈u,u  3u1
2  2u2

2  0 iff u1  u2  0
i.e u  〈u1,u2   0

Example (11):
Let f and g be real valued continuous function in the vector space ca,b show that
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〈f, g  
a

b
fxgxdx

defines an Inner product on ca,b

Solution :
1) 〈f, g  

a

b fxgxdx  
a

b gxfxdx  〈g, f

2) 〈f, g  h  
a

b fxgx  hxdx  
a

b fxgxdx  
a

b fxhxdx  〈f, g  〈f, h

3) 〈kf,g  
a

b kfxgxdx  k 
a

b fxgxdx  k〈f, g

4) snice fx2 ≥ 0 for all x , then

〈f, f  
a

b
fx2dx ≥ 0

〈f, f  
a

b
fx2dx  0 iff fx  0

i.e f is the zero function in ca,b

Theorem 2.2:2:

let u,v and w be vectors in an inner product space v ,and let c be any real number
1) 〈0,v  〈v,0  0
2) 〈u  v,w  〈u,w  〈v,w
3) 〈u,cv  c 〈u,v

Proof :
1) 〈0,v  〈v,0 by def

〈0,v  〈0v,v
 0 〈v,v
 0

Definition 2.2.3:
If u and v are vectors in an inner pruduct space v
1) The norm (or length) of u is ‖u‖  〈u,u
2) The distance between u and v is du,v  ‖u − v‖
3) The angle between two nonzero vectors u and v is given by

cos  〈u,v
‖u‖‖v‖ , 0 ≤  ≤ 

4) u and v are orthogonal if 〈u,v  0

Remark :
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If ‖v‖  1, then v is called a unit vector,Moreover if v is a nonzero vector in an inner
product space v,

then the vector u  v
‖v‖ is a unit vector and is called the unit vector in the direction of v.

Example (12):
let px  1 − 2x2 and qx  4 − 2x  x2 be polynomials in P2
find 〈p,q , ‖q‖ ,dp,q ,
which pair are orthogonal according to
〈p,q  a0b0  a1b1  a2b2

Solution :
〈p,q  14  0−2  −21

 4 − 2  2

‖q‖  〈q,q  42  −22  12  16  4  1  21

dp,q
px − qx  1 − 2x2 − 4  2x − x2

 −3x2  2x − 5
 −5  2x − 3x2

‖p − q‖  dp,q  32  22  −32

 9  4  9
 22

〈p,q  2 ≠ 0 is not orthogonal
if rx  x  2x2

〈p,q  2 ≠ 0
〈p, r  10  01 − 22  −4 ≠ 0
〈q, r  40 − 21  12  −2  2  0
so q, r are orthogonal.

Example (13):
If 〈f, g  

0

1 fxgxdx
find ‖f‖, df, g for fx  x, gx  x2 in c0,1

Solution :
‖f‖2  〈f, f  

0

1
xxdx  

0

1 x2dx  x3

3 0

1

 1
3 − 0  1

3
‖f‖  1

3
df, g2  〈f − g, f − g

 
0

1
x − x22dx
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0

1
x2 − 2x3  x4 dx

 x3

3 −
2x4

4  x5

5 0

1

 1
3 −

1
2  1

5  1
30

df, g  1
30

Remark :
properties of length and distance for Rn olso hold for general Inner produce spaces,
if u, and v are vectors in an inner product space then the following properties is true:

properties of norm properties of distance
a) ‖u‖ ≥ 0 a) du,v ≥ 0
b) ‖u‖  o  u  0 b) du,v  0  u  v
c) ‖cu‖  c‖u‖ c) du,v  dv,u
d) ‖u  v‖ ≤ ‖u‖  ‖v‖ d) du,v ≤ du,w  dw,v

triangle inequality triangle inequality

Theorem 2.2.4:
let u,v be vectors in an inner product space v.

1) Cauchy schwarz inequality : |〈u,v| ≤ ‖u‖‖v‖.
2) Triangle inequality:‖u  v‖ ≤ ‖u‖  ‖v‖.
3) Pythagoream theorem: u and v are orthogonal iff

‖u  v‖2  ‖u‖2  ‖v‖2

before we prove this theorem we need to prove the following lemma:
Lemma 2.2.5:

If a,b,c are real numbers such that a  0
and a2 2b  c ≥ 0 ∀  ∈ R ,then

b2 ≤ ac

Proof :
completing the squeres
a2  2b  c  a2  2b

a   c
 a2  2b

a  
b2

a2   c − b2
a 

 a  b
a 2  c − b2

a 
 1

a a  b2  c − b2
a  ≥ 0 ∀ 

this must be true for
  −b

a thus c − b2
a ≥ 0

− b2
a ≥ −c

b2
a ≤ c and since a  0

b2 ≤ ac
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Proof of Th:2.2.4:
1) If u  0 ,then 〈u,v  〈0,v  0

Assume now that u ≠ 0
then for any scalar t we have
0 ≤ ‖tu  v‖2  〈tu  v, tu  v

 t2〈u,u  2t〈u,v  〈v,v
let a  〈u,u , b  〈u,v , c  〈v,v

 at2  2bt  c
so by lemma 2.2.5

b2 ≤ ac
〈u,v2 ≤ 〈u,u 〈v,v

|〈u,v|2 ≤ ‖u‖2‖v‖2

|〈u,v| ≤ ‖u‖‖v‖

2) ‖u  v‖2  〈u  v,u  v
 〈u,u  2〈u,v  〈v,v

≤ 〈u,u  2|〈u,v|  〈v,v

≤ ‖u‖2  2‖u‖‖v‖  ‖v‖2

≤ ‖u‖  ‖v‖2

‖u  v‖ ≤ ‖u‖  ‖v‖

3) we note that 〈u,v  0  〈v,u

‖u  v‖2  〈u  v,u  v

 〈u,u  2〈u,v  〈v,v

 〈u,u  0 〈v,v

 ‖u‖2  ‖v‖2

Example (14) :
Let fx  1 and gx  x be functions in the vector space c0,1with the inner product


0

1 fx. gxdx  〈f, g
Verify Cauchy Schwariz inequality and find df, g
We want to prove |〈f, g|≤ ||f||. ||g||

〈f, g  0 
1

fx. gxdx 0 
1

xdx  x2

2 0

1
 1

2
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〈f, f  ||f||2  0 
1

dx  x0
1  1  ||f|| 1

〈g,g  ||g||2  0 
1

x2dx  x3

3 0

1
 1

3  ||g|| 1

||f|| ||g|| 1
3

 0.577

|〈f, g|≤ ||f|| ||g||  0.5 ≤ 0.577
d f, g 2

 〈f − g, f − g  ||f − g||2

 0 
1
fx − gx2dx

 0 
1
1 − x2dx

 0 
1
1 − 2x  x22dx

 x − 2x2

2  x3

3 0

1
 1 − 1  1

3  1
3

d f, g  1
3

2.3 Orthogonal projection in inner product space:

Let u and v be vectors in the plane . If v is nonzero , then we can orthogonally project u
and v .

This projection is denoted by projvu , since projvu is a scolar multiple of v , we can
write

projvu  av

If a  0 then cos  0 in (a) , the length of the projvu is

||av|| ||u||cos  ||u|| ||v|| cos
||v||  〈u,v

||v||

Which implies that
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a  〈u,v
||v||2

 〈u,v
〈v,v

If a  0 could be shown by the same formula

Definition :
Let u , v be vectors in an inner product space v such that v ≠ 0 , then the orthognal

projection of u onto v is given by

projvu  av  〈u,v
〈v,v v

Remark :
If v is a unit vector , then  v,v   ||v||2  1
then projvu   u,v  v

Theorem 2.3.1:
Let u and v be two vectors in an inner product space v, such that v ≠ 0 , then

d u,projvu  d u,cv, c ≠ 〈u,v
〈v,v

Proof :
Let b  〈u,v

〈v,v , then we can write

||u − cv||2  ||u − bv  b − cv||2

where u − bv, b − cv are orthogonal
〈u − bv, b − cv  b〈u,v  bc〈v,v − c〈u,v − b2〈v,v
 b − c〈u,v  bc − b〈v,v
 b − c 〈u,v

〈v,v  bc − b 〈u,v
〈v,v 〈v,v

 b − cb  bc − b  0
So 〈u − bv, b − cv  0

by Pythagoream Theorem :
|| u − bv  b − cv ||2  ||u − bv||2  ||b − cv||2
 ||u − bv||2  b − c2 ||v||2

Since b ≠ c and v ≠ 0 we know that b − c2 ||v||2  0 , Therefore
||u − bv||2  ||u − cv||2
 d u,bv  d u,cv
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 d u, 〈u,v
〈v,v v  d u,cv

 d u,projvu  d u,cv

Example (15) :
In R3, write the Euclidean inner product, find the orthogonal projection of u onto v ,

where
u  3,1,2 and v  7,1,−2

Solution :

projvu  〈u,v
〈v,v v

〈u,v  21  1 − 4  18
〈v,v  ||v||2  49  1  4  54
projvu  18

54 7,1,−2
 1

3 7,1,−2
  7

3 , 1
3 , −2

3 

2.3.2 The Orthogonal Complements:
If v is a plane through the origin of R3 with the Euclideam inner product,
then the set of all vectors that are orthogonal to every vector in v forms the line L
through the origin that is porpendicular to v.
In the language of linear algebra we say that the line and the plane are Orthogonal

Complement if one another

Definition 2.3.3:
Let W be a subspace of an inner product space V. A vector u in V is said to be

orthogonal to W if it is orthogonal to
every vector in W, and the set of all vectors in V that are orthogonal to W is called the

orthogonal complement of W
The orthogonal complement of a subspace W is denoted by W read ( W perp ).
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Theorem 2.3.4:
If W is a subspace of an inner product space V. Then,
(a) W is a subspace of V.
(b) The Only vector common to both W and W is 0.
(c) The orthogonal complement of W is W; that is W  W

Proof :
(a) Note that 〈0,w  0 for every w ∈ W, SoW contains at least the zero vector.
We want to show that W is closed under addition and scalor multiplication
i.e. we want to show that the sum ot two vectors in W is orthogonal to every vector in

W
and similarly for matrix multiplication
Let u,v ∈ W , k any scalor and let w ∈ W
so 〈u,w  0 , 〈v,w  0 so
〈u  v,w  〈u,w  〈v,w  0  0  0
So u  v ∈ W

〈ku,w  k〈u,w  k0  0
So ku ∈ W

∴ W is a subspace of V.

Remark :
W and W are orthogonal Complement

Theorem 2.3.5:
If A is an m  n matrix then,
(a) The null space of A and the row space of A are orthogonal complements in Rn

with respect to the standard Euclidean inner product.
(b) The null space of At and the column space of A are orthogonal complements in Rm

with respect to the standard Euclidean inner product.

Example (16):
Let W be the subspace of R5 spanned by the vectors
w1  2,2,−1,0,1; w2  −1,−1,2,−3,1; w3  1,1,−2,0,−1 and

w4  0,0,1,1,1
Find the basis for the orthogonal complement of W.

Solution :
The space W spanned by w1,w2,w3 and w4 to the same as the row spase of the matrix
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A 

2 2 −1 0 1
−1 −1 2 −3 1
1 1 −2 0 −1
0 0 1 1 1

The null space of A is the orthogonal complement of W

−1 −1 2 −3 1
2 2 −1 0 1
1 1 −2 0 −1
0 0 1 1 1



1 1 −2 3 −1
0 0 3 −6 3
0 0 0 −3 0
0 0 1 1 1



1 1 −2 3 −1
0 0 1 −2 1
0 0 0 1 0
0 0 0 1 0



1 1 0 −1 1
0 0 1 −2 1
0 0 0 1 0
0 0 0 0 0



1 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

x1  x2  x5  0  x1  −x2 − x5 Let x2  t, x5  s
x3  x5  0  x3  −x5  −s
x4  0  x4  0 so x1  −t − s

x 

x1

x2

x3

x4

x5



−t − s
t
−s
0
s



−1
1
0
0
0



−1
0
−1
0
1

 u1  u2

u1,u2 form the basis for all nullspace of W .
i.e. u1, u2 form basis for the orthogonal cpmplement of W The basis of the row space is

2 2 −1 0 1
−1 −1 2 −3 1
1 1 −2 0 −1
0 0 1 1 1



1 1 −2 3 −1
2 2 −1 0 1
1 1 −2 0 −1
0 0 1 1 1



1 1 −2 3 −1
0 0 3 −6 3
0 0 0 −3 0
0 0 1 1 1
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1 1 −2 3 −1
0 0 1 −2 1
0 0 1 1 1
0 0 0 1 0



1 1 −2 3 −1
0 0 1 −2 1
0 0 0 1 0
0 0 0 0 0

v1  1,1,−2,3,−1
v2  0,0,1,−2,1
v3  0,0,0,1,0
basis for row space of W
u1.v1  0, u1.v2  0, u1.v3  0
u2.v1  0, u2.v2  0, u2.v3  0
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Problem Set II

(1) Find (a) 〈u,v, (b) ||u||, and (c) du,v for the given inner product defined in Rn

(i) u  3,4,v  5,−12, 〈u,v  u  v
(ii) u  −4,3, v  0,5, 〈u,v  3u1v1  u2v2
(iii) u  0,9,4, v  9,−2,−4,〈u,v  u  v
(iv) u  8,0,−8, v  8,3,16, 〈u,v  2u1v1  3u2v2  u3v3

(2) Use the given functions f and g in C−1,1 to find (a) 〈f, g,
(b)||f||, and (c) df, g for the inner product given by

〈f, g  0 
1

fx. gxdx

(i) fx  x2, gx  x2  1

(ii) fx  x, gx  ex

(3) Use the inner product

〈A,B  2a11b11  a12b12  a21b21  a22b22

To find (a) 〈A,B, (B) ||A|| , and (c) dA,B for the given matrices in M2,2

A 
−1 3
4 −2

, B 
0 −2
1 1

(4) Use the inner product

〈p,q  a0b0  a1b1  a2b2

To find (a) 〈p,q, (B) ||p|| , and (c) dp,q for the given polynomials in P2

px  1 − x  3x2, qx  x − x2

(5) State why 〈u,v is not an inner product for u  u1,u2 and v  v1,v2 in R2

(i) 〈u,v  u1v1
(ii) 〈u,v  u1v1 − u2v2

(6) Find the angle between the given vectors
(i) u  3,4, v  5,−12, 〈u,v  uv
(ii) u  1,1,1, v  2,−2,2, 〈u,v  u1v1  2u2v2  u3v3

(iii) fx  x, gx  x2, 〈f, g  
−1

1
fxgxdx
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(7) Verify (a) the Cauchy - Schwarz Inequality and (b) the Triangle Inequality
(i) u  5,12, v  3,4, 〈u,v  u  v
(ii) px  2x, qx  3x2  1, 〈p,q  a0b0  a1b1  a2b2

(iii) fx  sinx, gx  cosx, 〈f, g  
−


fxgxdx

(8) Show that f and g are orthogonal in the inner product space Ca,b with the inner
product given by

〈f, g  a 
a

fxgxdx
C−1,1, fx  x, gx  1

2 5x3 − 3x

(9) (a) find projvu, (b) find projuv
u  1,2, v  2,1

(10) Find (a) projvu, and (b) projuv
u  1,3,−2, v  0,−1,1

(11) Find the orthogonal projection of f onto g. Use the inner product in Ca,b given
by

〈f, g  a 
a

fxgxdx

C0,1, fx  x, gx  ex

(12) Prove that ||u  v||2  ||u − v||2  2||u||2  2||v||2 for any vectors u and v in an inner
product space V.

(13) Let u and v be nonzero vectors in an inner product space V. Prove that projvu is
orthogonal to V.

(14) Let A 

1 2 −1 2
3 5 0 4
1 1 2 0

(a) Find bases for the row space and null spase of A

(b) Verify that every vector in row space is orthogonal to every vector in the null space

(15) Find a basis for the orthogonal complement of the subspace of Rn spanned by the
vectors

(a) v1  1,−1,3, v2  5,−4,−4, v3  7,−6,2
(b) v1  1,4,5,6,9 , v2  3,−2,1,4,−1 , v3  −1,0,−1,−2,−1, v4  2,3,5,7,5
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(16) Let V be an inner product space, show that if u and v are orthogonal vectors in V
such that

||u|| ||v|| 1 then ||u − v|| 2
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2.4 : Orthonormal Basis, Gram - Schmidt Process;
QR - Decomposition

Definition 2.4.1:
A set of vectors in an inner product space is called an orthogonal set if all pairs of

distinct vectors in the set are
orthogonal. An orthogonal set in which each vectors has norm 1 is called an

orthonormal .

Remark :
For S  v1,v2, . . . . . . , vn this definition has the following for

orthogonal orthonormal

1 〈vi, vj   0, i ≠ j 
1 〈vi, vj   0, i ≠ j

2 ||vi|| 1, i  1,2,3, . . . . . . , n
if S is a basis then its called an orthogonal basis or an orthonormal basis

Example (17) :
Show that the following set is an orthonormal basis for R3

S  1
2

, 1
2

,0 , − 2
6 , 2

6 , 2 2
3 , 2

3 , −2
3 , 1

3

Solution :
First we show that the three vectors are mutually orthogonal
〈v1,v2   −1

6  1
6  0  0

〈v1,v3   2
3 2
− 2

3 2
 0  0

〈v2,v3  
− 2

9 − 2
9  2 2

9  0

||v1|| 1
2  1

2  0  1

||v2|| 2
36  2

36  8
9  2232

36  1

||v3|| 4
9  4

9  1
9  1

So S is an orthonormal set of vectors
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Theorem 2.4.2 :
If S  v1,v2, . . . . . . , vn is an orthogonal set of non-zero vectors in an inner product

space v,
then S in linearly independent

Proof :
We need to shwo that the vectors equation

c1v1  c2v2 . . . . . .cnvn  0

implies that c1  c2 . . . . . . cn  0 . To do this, we take the inner product of
the left side of the equation with each vector in S. That is, for each i

〈c1v1  c2v2 . . . . . .civi . . . . . . . . .cnvn, vi   〈0,vi   0
c1〈v1,vi   c2〈v2,vi  . . . . . .ci〈vi, vi  . . . . .cn〈vn,vi   0

Now since S is orthogonal , 〈vi, vi   0 for i ≠ j , and thus the equation reduces to
ci〈vi, vi   0

But because each vector in S is non-zero, we know that 〈vi, vi   ||vi||2 ≠ 0
Hence every ci must be zero and the set must be linearly independent

Corollary 2.4.3 :
If V is an inner product space of dimension n, then any orthogonal set of n vectors is a

basis of V.

Example (18) :
Show that the following set is a basis for R4

S  2,3,2,−2, 1,0,0,1, −1,0,2,1, −1,2,−1,1

Solution :
〈v1,v2   2  0  0 − 2  0

〈v1,v3   −2  0  4 − 2  0

〈v1,v4   −2  6 − 2 − 2  0

〈v2,v3   −1  0  0  1  0

〈v2,v4   −1  0  0  1  0

〈v3,v4   1  0 − 2  1  0

Thus S is orthogonal , and by the corollary above its a basis for R4
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Coordinates relative to orthonormal basis :

Theorem 2.4.4 :
If S  v1,v2, . . . . . . , vn that is an orthogonal basis for an inner product space v and u

is any vector in v then,

u  〈u,v1 v1  〈u,v2 v2 . . . . . . .〈u,vn vn     (*)

where (*) is the coordinate representation of u with respect to S . i.e.

uS  uS  〈u,v1 , 〈u,v2 , . . . . . . . , 〈u,vn 

Proof :
Since S  v1,v2, . . . . . . , vn is a basis , a vector u can be expressed in the form

u  k1v1  k2v2 . . . . . .knvn

we will show that ki  〈u,vi  for i  1,2, . . . . . . , n
For each vector vi in S we have

〈u,vi   〈k1v1  k2v2 . . . . . .knvn,vi 

 k1〈v1,vi   k2〈v2,vi  . . . . . . .kn〈vn,vi 

    (**)

Since S  v1,v2, . . . . . . , vn is orthonormal set, we have 〈vi, vi   ||vi||2  1 and
〈vj, vi   0 for i ≠ j

Therefore (**) for 〈u,vi  simiphlies to 〈u,vi   ki

So uS  〈u,v1 , 〈u,v2 , . . . . . . . , 〈u,vn 
Which are called : Fourier Coefficients of u relative to S

Example (19) :
Let v1  0,1,0, v2   −4

5 ,0, 3
5 , v3   3

5 ,0, 4
5  be an orthonormal basis for R3.

Express the vector u  1,1,1 as a linear combination of the vectors in S ,
S  v1,v2, v3, and find the coordinate vector uS

Solution :
〈u,v1   1, 〈u,v2   −1

5 , 〈u,v3   7
5

u  v1 − 1
5 v2  7

5 v3

1,1,1  0,1,0 −  −4
5 ,0, 3

5   
3
5 ,0, 4

5 

uS  1, −1
5 , 7

5 
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Theorem 2.4.5 :
If S is an orthonormal basis for n - dimenional inner product space, and if

us  u1,u2, . . . . . , un and vs  v1,v2, . . . . . . , vn

then
(a) ||u|| u12  u22 . . . . .un2

(b) du,v  u1 − v12  u2 − v22 . . . . .un − vn2

(c) 〈u,v  u1v1  u2v2 . . . . .unvn

Example (20):
If R3 has the Euclidean inner product, then the norm of u  1,1,1 is ||u||

 1  1  1  3
from last example uS  1, −1

5 , 7
5 

we can calculate ||u||  1  1
25  49

25  25149
25  75

25  3
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2.4.5. Coordinates Relative to Orthoginal Basia:

If S  v1,v2, . . . . . . , vn is an orthogonal basis for a vector space v,
then normalizing each of these vectors yields the orthonormal basis

S
′

 v1
||v1|| , v2

||v2|| , . . . . . . , vn
||vn||

Thus u is any vector in v it follows that

u  〈u,v1
||v1||2

v1 
〈u,v2
||v2||2

v2 . . . . . . . . 〈u,vn
||vn||2

vn

Orthogonal projection :
We shall now develop some results that will help to construct orthogonal and

orthonormal bases
for inner product space. In R2 and R3 with the Euclidean inner product its evident
that if W is a line or a plane through the origin then each vector u in the space
can be expressed as a sum

u  w1  w2

where w1 is in W and w2 is perpendicular to W

Theorem 2.4.6: Projection Theorem:
If W is a finite dimensional subspace of an inner product space V ,
then every vector u in V can be expressed in exactly are way as

u  w1  w2

where w1 is in W and w2 is perpendicular to W

The vector w1 in the projection theorem is called the orthogonal projection of u on W

and is denoted by projw u.
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The vector w2 is called the component of u orthogonal to W and is denoted by projw  u.
Thus

u  w1  w2

 projw u.projw  u.

Since w2  u − w1 it follows that projw  u. u − projw u . So

u  projw u.u − projw u.

Theorem 2.4.7 :
Let W be a finite dimensional subspace of an inner product space V.
(a) If v1,v2, . . . . . . , vr is an orthonormal basis for W, and u is any vector in V, then

projw u  〈u,v1v1  〈u,v2v2 . . . . . . . .〈u,vrvr

(b) If v1,v2, . . . . . . , vr is an orthogonall basis for W, and u is any vector in V, then

projw u  〈u,v1
||v1||2

v1 
〈u,v2
||v2||2

v2 . . . . . . . . 〈u,vr
||vr||2

vr

Example (21):
Let R3 with Euclidean inner product and let W be the subspace spanned by the

orthonormal vectors
v1  0,1,0, v2   −4

5 ,0, 3
5  , Find projw u of u  1,1,1 on W

Solution :
projw u  〈u,v1v1  〈u,v2v2

 10,1,0  − 1
5 
−4
5 ,0, 3

5 

  4
25 ,1, −3

25 

The component of u orthogonal to W is
projw  u. u − projw u
 1,1,1 −  4

25 ,1, −3
25 

  21
25 ,0, 28

25 
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2.4.8: Gram - Schmidt orthonormalization process

Theorem 2.4.9:
(1) Let B  v1,v2, . . . . . . , vn be a basis for an inner product space V.
(2) Let B ′  w1,w2, . . . . . . ,wn, where wi is given by

w1  v1

w2  v2 −
〈v2,w1 
〈w1,w1 

w1

w3  v3 −
〈v3,w1 
〈w1,w1 

w1 −
〈v3,w2 
〈w2,w2 

w2



wn  vn −
〈vn,w1 
〈w1,w1 

w1 −
〈vn,w2 
〈w2,w2 

w2 −. . . . . . . . . .− 〈vn,wn−1 
〈wn−1,wn−1 

wn−1

Then B ′ is an orthogonal basis for V.
(3) Let ui 

wi
‖wi‖

. Then the set B ′′  u1,u2, . . . . . . , un is an orthonormal basis for

V.

Example (22):
Apply the Gram - Shmidt orthormalization process to the following basis of R3

B  1,1,0, 1,2,0, 0,1,2

Solution :
w1  v1  1,1,0

w2  v2 − 〈v2,w1 
〈w1,w1 

w1

 1,2,0 − 3
2 1,1,0  − 1

2 , 1
2 , 0

w3  v3 − 〈v3,w1 
〈w1,w1 

w1 − 〈v3,w2 
〈w2,w2 

w2

 0,1,2 − 1
2 1,1,0 −

1
2
1
2
− 1

2 , 1
2 , 0  0,0,2

The set B ′  w1,w2,w3 is an orthogonal basis for R3, Normalizing each vector in B ′

produces
u1 

w1
‖w1‖

 1
2
1,1,0  2

2 , 2
2 , 0
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u2 
w2
‖w2‖

 1
1
2

− 1
2 , 1

2 , 0  − 2
2 , 2

2 , 0

u3 
w3
‖w3‖

 1
2 0,0,2  0,0,1

Thus B ′′  u1,u2, . . . . . . , un is an orthonormal basis for R3,

This is an alternative form of the Gram - Schmidt orthonormalization proces has the
following steps:

u1 
w1
‖w1‖

 v1
‖v1‖

u2 
w2
‖w2‖

where w2  v2 − 〈v2,u1 u1

u3 
w3
‖w3‖

where w3  v3 − 〈v3,u1 u1 − 〈v3,u2 u2



un 
wn
‖wn‖

where wn  vn − 〈vn,u1 u1 −. . . . . . .−〈vn,un−1 un−1

Example (23):
Apply G.S.O.P to the basis 1,x,x2 in P2 using the inner product:

〈p,q  
−1

1

pxqxdx

Solution :
Let B  1,x,x2  v1,v2, v3 , then
w1  v1  1

w2  v2 − 〈v2,w1 
〈w1,w1 

w1

 x −

−1

1

xdx


−1

1

dx

 x − x2

2x −1

1
 x 1

2  1
2   x

w3  v3 − 〈v3,w1 
〈w1,w1 

w1 − 〈v3,w2 
〈w2,w2 

w2
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 x2 −


−1

1

x2dx


−1

1

dx

−


−1

1

x3dx


−1

1

x2dx

x

 x2 −
x3
3 −1

1

x−1
1 −

x4
4 −1

1

x3
3 −1

1 x  x2 − 1
3

B′  w1,w2,w3

u1 
w1
‖w1‖

 1
〈w1,w1 

 1


−1

1

dx

 1
2

u2 
w2
‖w2‖

 x


−1

1

x2dx

 3
2 x

u3 
w3
‖w3‖


x2− 1

3


−1

1

x4− 2
3 x2 1

9 dx

 3 5
2 2

3x2 − 1

Example (24):
Consider the following basis of Euclidean space R3

v1  1,1,1, v2  0,1,1, v3  0,0,1
We use the Gram-Schmidt orthogonalization process to transform vi into an

orthonormal basis ui.
First we normalize v1 i.e. we set

u1 
v1
‖v1‖

 1,1,1
3

 1
3

, 1
3

, 1
3

Next we set

w2  v2 − 〈v2,u1 u1  0,1,1 − 2
3

1
3

, 1
3

, 1
3

 −2
3 , 1

3 , 1
3

and then we normalize w2, i.e. we get

u2 
w2
‖w2‖

 −2
6

, 1
6

, 1
6

Finally we set
w3  v3 − 〈v3,u1 u1 − 〈v3,u2 u2

 0,0,1 − 1
3

1
3

, 1
3

, 1
3

− 1
6

−2
6

, 1
6

, 1
6

 0, −1
2 , 1

2
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and then we normalize w3 :

u3 
w3
‖w3‖

 0, −1
2

, 1
2

The required orthonormal basis of R3 is

u1  1
3

, 1
3

, 1
3

,u2  −2
6

, 1
6

, 1
6

,u3  0, −1
2

, 1
2

Example (25):
Find an orthonormal basis for the solution space of the following homogeneous system

of linear equations
x1  x2  7x4  0
2x1  x2  3x3  6x4  0

Solution :
The ougmented matrix for this system reduces as follows

1 1 1 7 0
2 1 2 6 0


1 0 2 −1 0
0 1 −2 8 0

Let x3  s and x4  t then

x1

x2

x3

x4



−2s  t
2s − 8t

s
t

 s

−2
2
1
0

 t

1
−8
0
1

Therfore one basis for the solution space is:
B  v1,v2  −2,2,1,0, 1,−8,0,1

To find the othonormal basis B ′  u1,u2, we use the alternative form of the G.S.O.P.
as follows

u1 
v1
‖v1‖

 1
3 −2,2,1,0  − 2

3 , 2
3 , 1

3 , 0
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w2  v2 − 〈v2,u1 u1

 1,−8,0,1 − 1,−8,0,1. − 2
3 , 2

3 , 1
3 , 0 − 2

3 , 2
3 , 1

3 , 0

 1,−8,0,1 − 4,−4,−2,0  −3,−4,2,1

u2 
w2
‖w2‖

 1
30

−3,−4,2,1  −3
30

, −4
30

, 2
30

, 1
30

B ′  − 2
3 , 2

3 , 1
3 , 0 , −3

30
, −4

30
, 2

30
, 1

30

2.5. QR DeComposition:

If A is an m  n matrix with linearly independent column vectors, and if Q is the matrix
with orthonormal column vectors that results from applying the Gram-Schmidt Process

to the column vectors of A, what relationship, if any, exists between A and Q?

To solve, this problem, suppose that the column vectors of A are u1,u2, . . . . . . , un
and the orthonormal column vectors of Q are q1,q2, . . . . . . , qn : thus

A  u1|u2|. . . . . . |un  and Q  q1|q2|. . . . . . |qn 

it follows from Theorem 2.4.4. that u1, u2, . . . . . . , un are experssible in terms of
q1,q2, . . . . . . , qn

u1  〈u1,q1 q1  〈u1,q2 q2 . . . . . . . .〈u1,qn qn

u2  〈u2,q1 q1  〈u2,q2 q2 . . . . . . . .〈u2,qn qn



un  〈un,q1 q1  〈un,q2 q2 . . . . . . . .〈un,qn qn

As we know that the jth column vector of a matrix product is a linear combination
of the column vectors of the first factor with coefficients coming from the jth column of

the second factor,
it follows that these relationship can be expressed in matrix form as

u1|u2|. . . . . . |un   q1|q2|. . . . . . |qn  

〈u1,q1  〈u2,q1  . . . . 〈un,q1 

〈u1,q2  〈u2,q2  . . . . 〈un,q2 



〈u1,qn  〈u2,qn  . . . . 〈un,qn 

Or more briefly as A  QR
However its a property of Gram-Schmidt Process that for j ≥ 2 ,

the vector qi is orthogonal to u1,u2, . . . . . . , uj−1, thus all entries below the main diagonal
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of R are zero

R 

〈u1,q1  〈u2,q1  . . . . 〈un,q1 

0 〈u2,q2  . . . . 〈un,q2 

 

0 0 . . . . 〈un,qn 

Theorem 2.5.1:
If A is an m  n matrix with linearly independent column vectors, then A can be

factored as

A  QR

Where Q is an m  n matrix with orthonormal column vectors and R is an n  n
invertible upper triangular matrix.

Remark :
If A is an n  n matrix then the invertibilty of A is equivalent to linear independence of

the column vectors. Thus,
every invertible matrix has a QR-decomposition

Example (26):
Find the QR-decompostion of

A 

1 0 0
1 1 0
1 1 1

Solution :
The column vectors of A are

u1 

1
1
1

,u2 

0
1
1

,u3 

0
0
1

Applying G.S.O.P. it yields to the following orthonormal vector

q1 

1
3

1
3

1
3

, q2 

−2
6

1
6

1
6

, q3 

0
−1

2

1
2
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R 
〈u1,q1  〈u2,q1  〈un,q1 

0 〈u2,q2  〈un,q2 

0 0 〈un,qn 



3
3

2
3

1
3

0 2
6

1
6

0 0 1
2

Thus the QR-DeComposition of A is

1 0 0
1 1 0
1 1 1



1
3

−2
6

0

1
3

1
6

−1
2

1
3

1
6

1
2

3
3

2
3

1
3

0 2
6

1
6

0 0 1
2

A  QR
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2.6: Applications of inner product
space

Definition 2.6.1:
Cross product of two vectors:
Let u  u1i  u2j  u3k and v  v1i  v2j  v3k be vectors in R3.
The cross product of u and v is the vector

u  v  u2v3 − u3v2i − u1v3 − u3v1j  u1v2 − u2v1k

Remark :
The cross product is defined only for vectors in R3. We do not define the cross product

of two vectors in R2.
or of vectors in Rn, n  3

A convenient way to remember the formula for the cross product u  v is to use the
following determinat form

u  v 

i j k
u1 u2 u3

v1 v2 v3

 Component of u
 Component of v

Technically its not a det. because the enteries are not all real numbers.

u  v  u2v3 − u3v2i − u1v3 − u3v1j  u1v2 − u2v1k


u2 u3

v2 v3
i −

u1 u3

v1 v3
j 

u1 u2

v1 v2
k

Example (27):
Given u  i − 2j  k and v  3i  j − 2k find the following
(a) u  v (b) v  u (c) v  v

Solution :

(a) u  v 

i j k
1 −2 1
3 1 −2

 4 − 1i − −2 − 3j  1  6k  3i  5j  7k
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(b) v  u 

i j k
3 1 −2
1 −2 1

 1 − 4i − 3  2j  −6 − 1k  −3i − 5j − 7k

(c) v  v 

i j k
3 1 −2
3 1 −2

 −2  2i − −6  6j  3 − 3k  0i  0j  0k  0

So u  v  −v  u and v  v  0

Theorem 2.6.2:
If u,v and w are vectors in R3. and c is scalar, then the following properties are true:
(1) u  v  −v  u (2) u  v  w  u  v  u  w
(3) cu  v  cu  v  u  cv (4) u  0  0  u  0
(5) u  u  0 (6) u  v  w  u  v  w

The proof is homework

Theorem 2.6.3:
If u,v and are nonzero vectors in R3, then the following properties are true:
(1) u  v is orthogonal to both u and v.
(2) The angle  between u and v is given by:

‖u  v‖  ‖u‖‖v‖ sin

(3) u and v are parallel iff u  v  0
(4) The parallelogram having u and v adjacent sides has an area of ‖u  v‖

Proof :

(4) Let u, v be the adjacent sides of a parallelogram, by (2) the area of it is given by
Area  ‖u‖ ‖v‖ sin
Base hight

 ‖u  v‖
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Example (28):
Find a unit vector that is orthogonal to both
u  i − 4j  k , v  2i  3j

Solution :
We know that u  v is orthogonal to u and v

u  v 

i j k
1 −4 1
2 3 0

 −3i  2j  11k

by dividing by the length of u  v
‖u  v‖  −32  22  112  134
we obtain the unit vector

uv
‖uv‖  −3

134
i  2

134
j  11

134
k

Which is orthogonal to both u and v

Example (29):
Find the area of the parallelogram that has
u  −3i  4j  k and v  −2i  6k
as adjacent sides

Solution :
‖u  v‖ is the area

u  v 

i j k
−3 4 1
0 −2 6

 26i  18j  6k

‖u  v‖  262  182  36  1036 ≈ 32.19 unit2

55



56



Problem IV

(1) Find the area of the paralldogram that has the given vectors as adjacent sides:
(a) u  1,0,0, v  0,1,0
(b) u  i  j  k, u  2i  j − k

(2) Find the area of the paralldogram that has the given vectors as adjacent sides
(a) u  3,2,−1, v  1,2,3
(b) u  2,−1,0, v  −1,2,0
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Problem Set III
(1) Determine whether the set of vectors in Rn is orthogonal, orthonormal, or neither

(i)  3
5 , 4

5 , 
−4
5 , 3

5 

(ii) 2
2 , 0, 2

2 , − 6
6 , 6

3 , 6
6 , 3

3 , 3
3 , − 3

3

(iii) 2
2 , 0,0, 2

2 , 0, 2
2 , 2

2 , 0 ,  −1
2 , 1

2 , −1
2 , 1

2 

(2) Verify that 1,x, 2, x3 is an orthonormal basis for P3 with the inner product
〈p,q  a0b0  a1b1  a2b2  a3b3

(3) Find the coordinates of x relative to the orthonormal basis B in Rn

(i) B  −2 13
13 , 3 13

13 , 3 13
13 , 2 13

13 , x  1,2

(ii) B   3
5 , 4

5 , 0,  −4
5 , 3

5 , 0, 0,0,1, x  5,10,15

(4) Use the Gram-Schmidt orthonormalization process to transform the given basis of
Rn into an orthonormal

basis.Use the Euclidean inner product for Rn and use the vectors in the order in
which they are given.

(i) B  3,4, 1,0

(ii) B  4,−3,0, 1,2,0, 0,0,4

(5) Use the Gram-Schmidt orthonorm;ization process to transform the given basis of a
subspace of Rn into an

orthonormal basis for thesubspace. Use the Euclidean inner product for Rn and use
the vectors in the order in

which they are given

(i) B  3,4,0, 1,0,0

(ii) B  1,2,−1,0, 2,2,0,1

(6) Find an orthonormal basis for the solution space of the given homogeneous system
of linear equations.
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(i)
2x1  x2 − 6x3  2x4  0
x1  2x2 − 3x3  4x4  0
x1  x2 − 3x3  2x4  0

(ii)
x1  x2 − x3 − x4  0

2x1  x2 − 2x3 − 2x4  0

(7) Let px  a0  a1x − a2x2 and qx  b0  b1x − b2x2 be vectors in P2
with 〈p,q  a0b0  a1b1  a2b2.

Determine whether the given second - degree polynomials form an orthonormal set,
and if not, use the Gram - Schmidt orthonormalization process to form an orthonormal

set.

(i) x21
2

, x2x−1
3

(ii) x2,x2  2x,x2  2x  1

(8) Use the inner product 〈p,q  a0b0  a1b1  a2b2. and the Gram - Schmidt
orthormalization process to

transform 2,−1, −2,10 into an orthonormal basis.

(9) Find an orthonormal basis for R4 the includes the vectors

v1  1
2

, 0, 1
2

, 0 and v2  0,− 1
2

, 0, 1
2

(10) In each part an orthonormal basis relative to the Euclidean inner product in given .
Find the coordinal vector of w with respect to that basis .
a) w  3,7, u1   1

2
, −1

2
 , u2   1

2
, 1

2
.

b) w  −1,0,2 , u1   2
3 , −2

3 , 1
3 , u2   2

3 , 1
3 , −2

3 , u3   1
3 , 2

3 , 2
3 

(11) Let R2, have a Euclidean inner product and let S  w1,w2be
the orthonormal basis with w1   3

5 , −4
5 , w2   4

5 , 3
5 .

a) Find the vector u and v that have coordinal vectorsuS  1,1 and
vS  −1,4.

b) Compute ||u|| , du,vand 〈u,v to the coordinate vectors uS and vS then
check the result by performing

the computation directly on u,v .

(12) the subspace w of R3, spanned by the vector u1   4
5 , 0, −3

5  and u2  0,1,0 is a

plane porsing through the origin.
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Express u  1,2,3 in the form u  w1  w2 , where w1 lies in the plane and w2
is perpendicular to the plane .

(13) Find the QR – decompoition of the matrix :

a)
1 −1
2 3

, b)
1 2 2
0 1 1
1 4 1

, c)
1 2 1
1 1 1
0 3 1
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Chapter III
Linear transformation

Definition 3.1.1:
If T : V  W is a function from a vector space V into a vector space W,
then T is called a linear transformation from V to W if for all vectors u and v in V and

all scalars c
(a) Tu  v  Tu  Tv
(b) Tcu  cTu
In the special case where V  W, the linear transformation T : V  V is called a

linear operator on V.

Definition 3.1.2:
If T : V  W is a linear transformation then the set of vectors in V that T maps into 0

is called the kernal of T and denoted by kerT .
The set of all vectors in W that are images under T of at least one vector in V
is called the range of T denoted by RT.

Definition 3.1.3:
If T : V  W is a linear transformation then the dimension of the range of T is called

the rank of T
denoted by rankT and the dimension of the kernal is called the nullity of T
denoted by nullityT.

Theorem 3.1.4:
Dimension Theorem for linear transformation:
If T : V  W is a linear transformation from an n - dimensional vector space V to a

vector space , then

rankT  nullityT  n  dim domain

3.2: Matrices of general linear transformation

In this section we shall show that if V and W are finite - dimensional vector spaces ( not
necessarily Rn and Rm ),

then with a little ingenuity any linear transformation T : V  W can be regarded as a
matrix transformation.

The basic idea is to work with coordinate matrices of the vectors rather than with the
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vectors themselves.

Matrices of linear transformation:

Suppose that V is an n - dimensional vector spase and W an m - dimensional vector
spase.

If we choose bases B and B ′ for V and W, respectively, then for each x in V,
the coordinate matrix xB will be A vector in Rn, and the coordinate matrix TxB ′

will be a vector in Rm (Figure 1).

If, as illustrated in Figure 2, we complete the rectangle suggested by Figure 1,
we obtain a mapping from Rn to Rm,which can be shown to be a linear transformation.
If we let A be the standard matrix for this transformation, then

AxB  TxB ′     (1)

The matrix A in (1) is called the matrix for T with respect to th bases B and B ′

Later in this section, we shall give some of the uses of the matrix A in (1), but first,
let us show how it can be computed.
For this purpose, let us suppose that B  u1,u2, . . . , un, is basis for the n -
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dimensional space
V and B ′  v1,v2. . . . , vm is a basis for the m - dimensional space W,
We are looking for an m  n matrix

A 

a11 a12 . . . a1n

a21 a22 . . . a2n

  

am1 am2 . . . amn

such that (1) holds for all vectors x in V.
In particular, we want this equation to hold for the basis vectors u1,u2, . . . , un,
that is,

Au1 B  Tu1B ′ , Au2 B  Tu2B ′ , . . . . ,Aun B  TunB ′     (2)

But

u1 B 

1
0
0


0

, u2 B 

0
1
0


0

, . . . . . , un B 

0
0
0


1

so
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Au1 B 

a11 a12 . . . a1n

a21 a22 . . . a2n

  

am1 am2 . . . amn

1
0
0


0



a11

a21



am1

Au2 B 

a11 a12 . . . a1n

a21 a22 . . . a2n

  

am1 am2 . . . amn

0
1
0


0



a12

a22



am2



Aun B 

a11 a12 . . . a1n

a21 a22 . . . a2n

  

am1 am2 . . . amn

0
0
0


1



a1n

a2n



amn

Substituting these results into (2) yields

a11

a21



am1

 Tu1B ′ ,

a12

a22



am2

 Tu2B ′ ,

a1n

a2n



amn

 TunB ′

which shows that the successtive columns of A are the coordinate matrices of

Tu1,Tu2, . . . . . . . . . . . . ,Tun

with respect to the basis B ′ . Thus, the matrix for T with respect to the bases B and B ′ is

A  Tu1B ′  Tu2B ′  . . .  TunB ′     (3)

This matrix is commonly denoted by the symbol

TB ′ ,B

so that the preceding formula can also be written as

TB ′ ,B  Tu1B ′  Tu2B ′  . . .  TunB ′     (4)

and from (1) this matrix has the property
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TB ′ ,BxB  TxB ′     (4a)

Remark :
Observe that in the notation TB ′ ,B the right subscript is a basis for the domain of T,
and the left subscript is a basis for the image space of T (Figure 3)

Moreover, observe how the subscript B seems to ” cancel out” in Formula (4a) (Figure
4)

Matrices of linear operators:
In the special case where V  W (so that T : V  V is a linear operator) it is usual to

take B  B ′

when constructing a matrix for T. In this case the resulting matrix is called the matrix
for T

with respect to the basis B and is usually denoted by TB rather than TB,B .
If B  u1,u2, . . . , un, then in this case Formulas (4) and (4a) become

TB  Tu1B  Tu2B  . . .  TunB     (5)

and

TBxB  TxB     (5a)

Phrased informally, (4a) and (5a) state that the matrix for T times the coordinate matrix
for x is the coordinate matrix for T(x).

Example (1):
Let T : P1  P2 be the linear transformation defined by
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Tpx  xpx
Find the matrix for T with respect to the standard bases
B  u1,u2 and B ′  v1,v2, v3
where ,
u1  1, u2  x ; v1  1,v2  x,v3  x2

Solution :
From the given formula for T we obtain
Tu1  T1  x1  x

Tu2  T1  xx  x2

By inspection, we can determine the coordinate matrices for Tu1 and Tu2 relative to
B ′ ;

they are

Tu1B ′ 

0
1
0

, Tu2B ′ 

0
0
1

Thus, the matrix for T with respect to B and B′ is

TB′,B   Tu1B′ Tu2B′  

0 0
1 0
0 1

Example (2):
Let T : P1  P2 be the linear transformation in Example (1). Show that the matrix

Tu1B ′ ,B 

0 0
1 0
0 1

(obtaind in Example (1)) satisfies (4a) for every vector x  a  bx in P1

Solution :
Since x  px  a  bx we have
Tx  xpx  ax  bx2

For bases B and B ′ in Example (1). it follows that

xB  a  bxB 
a
b

TxB ′  ax  bx2 B ′ 

0
a
b

Thus
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TB ′ ,BxB 

0 0
1 0
0 1

a
b



0
a
b

 TxB ′

Example (3):
Let T : R2  R3 be the linear transformation defined by

T
x1

x2


x2

−5x1  13x2

−7x1  16x2

Find the matrix for the transformation T with respect to the bases
B  u1,u2 for R2 and B ′  v1,v2, v3 for R3,
where

u1 
3
1

, u2 
5
2

; v1 

1
0
−1

,v2 

−1
2
2

,v3 

0
1
2

Solution :

Tu1  T
3
1



1
−2
−5

Tu2  T
5
2



2
1
−3

Tu1 

1
−2
−5

 a
1
0
−1

 b
−1
2
2

 c
0
1
2

a  1, b  0, c  −2

Tu1B ′ 

1
0
−2
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Tu1 

2
1
−3

 d
1
0
−1

 e
−1
2
2

 f
0
1
2

Tu1B ′ 

3
1
−1

TB ′ ,B  Tu1B  Tu2B 

1 3
0 1
−2 −1

Example (4):
Let T : R2  R2 be the linear operator defined by

T
x1

x2


x1  x2

−2x1  4x2

and let B  u1,u2 be the basis, where

u1 
1
1

, u2 
1
2

(a) Find Tu1B
(b) Verify that 5a holds for every vector x in R2.

Solution :

(a) Tu1 
2
2

 2u1  0u2, Tu2 
3
6

 3u2

Therefore

Tu1B 
2
0

and Tu2B 
0
3

TB  Tu1B  Tu2B 
2 0
0 3

(b) x 
x1

x2
(1)

is any vector in R2, then from the given formula for T
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Tx 
x1  x2

−2x1  4x2
(2)

To find xB , TxB we must express (1) and (2) as a L.C. of u1,u2 so
x1

x2
 k1

1
1

 k2
1
2

;

x1  x2

−2x1  4x2
 c1

1
1

 c2
1
2

So
k1  k2  x1

k1  2k2  x2
(3)

and
c1  c2  x1  x2

c1  2c2  −2x1  4x2
(4)

Solving (3) for k1,k2 we get
k1  2x1 − x2
k2  −x1  x2
So

xB 
2x1 − x2

−x1  x2

Solving (4) for c1, c2 , yields
c1  4x1 − 2x2
c2  −3x1  3x2
So that

TxB 
4x1 − 2x2

−3x1  3x2

Thus

TBxB 
2 0
0 3

2x1 − x2

−x1  x2

4x1 − 2x2

−3x1  3x2
 TxB

Theorem 3.2.1:
If T : Rn  Rm is a linear transformation and if B and B ′ are the standard bases for

Rn and Rm respectively, then
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TB ′ ,B  T

This theorem tells a special case where T maps Rn into Rm ,
the matrix for T with respect to the standard basis is the standard matrix for T.
In this special case formula (4a) of this section reduces to

Tx  Tx

To focus an the later idea:
Let T : V  W be a linear transformation, the matrix TB ′ ,B can be used to calculate

Tx in three steps by indirect
procedure.

x direct Tx

1 ↑ ↑ 3
xB Multiply by TxB ′

TB ′ ,B

2

(1) Compute the coordinate matrix xB.
(2) Multiply xB an the left by TB ′ ,B to produce TxB ′

(3) Reconstruct Tx from its coordinate matrix TxB ′

Example (5):
Let T : P2  P2 be the linear operator defined by

Tpx  p3x − 5
that is, Tc0  c1x  c2x2  c0  c13x − 5  c23x − 52

(a) Find TB with respect to the basis B  1,x,x2
(b) Use the indirect procedure to complete T1  2x  3x2
(c) Check the result in (b) by computing T1  2x  3x2 directily

Solution :
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T1  1, Tx  3x − 5, Tx2  3x − 52  9x2 − 30x  25

T1B 

1
0
0

, TxB 

−5
3
0

, Tx2B 

25
−30

9

,

Thus

TB 

1 −5 25
0 3 −30
0 0 9

(b) The coordinate matrix relative to B for the vector
p  1  2x  3x2 is

PB 

1
2
3

Thus from (5a)

T1  2x  3x2B  TpB  TBPB

1 −5 25
0 3 −30
0 0 9

1
2
3



66
−84
27

from which it follows that
T1  2x  3x2  66 − 84x  27x2

c) By direct computation
T1  2x  3x2  1  23x − 5  33x  52

 1  6x − 10  27x2 − 90x  75
 66 − 84x  27x2
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Problem Set V

(1) Let T : P2  P3 be the linear transformation defined by

Tpx  xpx

(a) Find the matrix for T w.r.t. the standard basis
B  u1,u2, u3 and B ′  v1,v2, v3, v4

where
u1  1, u2  x , u3  x2 ;
v1  1, v2  x, v3  x2, v4  x3

(b) Verify that the matrix TB ′ ,B obtained in part (a) satisfies formula (4a) for every
vector

x  c0  c1x  c2x2 in P2

(2) Let T : P2  P2 be the linear operator defined by
Ta0  a1x  a2x2  a0  a1x − 1  a2x − 12

(a) Find the matrix of T w.r.t the standard basis B  1,x,x2 for P2
(b) Verify that the matrix TB obtained in (z) satisfy formula (5a) for every vector

x  a0  a1x  a2x2 in P2

(3) Let T : R2  R3 be defined by

T
x1

x2


x1  2x2

−x1

0

(a) Find the matrix TB ′ ,B w.r.t. the bases B  u1,u2 and B ′  v1,v2, v3,
where

u1 
1
3

, u2 
−2
4

; v1 

1
1
1

,v2 

2
2
0

,v3 

3
0
0

(b) Verify that formula (4a) holds for every vectors x 
x1

x2
in R2

(4) Let T : P2  P2 be the linear operator defined by
Tpx  p2x  1
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that is, Tc0  c1x  c2x2  c0  c12x  1  c22x  12

(a) Find TB with respect to the basis B  1,x,x2
(b) Use the indirect procedure to complete T2 − 3x  4x2
(c) Check the result obtained in part (b) by computing T2 − 3x  4x2 directily
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5) Let v1  1
3 and v2   −1

4  and let A 
1 3
−2 5

be the matrix for

T : R2 → R2 w.r.t the basis B  v1,v2
a) Find Tv1B and Tv2B
b) Find Tv1 and Tv2

c) Find a formula for T
x1

x2

d) Use the formula obtoined in (c) to compute T
1
1

Solution :

Tv1B 
1
−2

Tv2B 
3
5

Tv1  1
1
3

− 2
−1
4


3
−5

Tv2  3
1
3

 5
−1
4


−2
29

TB xB  TxB

x 
x1

x2
 a

1
3

 b
−1
4

1 −1 x1

3 4 x2
→

1 0 4x1x2
7

0 1 −3x1x2
7

xB 
a  4x1x2

7

b  −3x1x2
7

AxB  TxB 
1 3
−2 5

4x1x2
7

−3x1x2
7
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c  −5x14x2

7

d  −23x13x2
7

T
x1

x2
 c

3
1

 d
−1
4

 −5x14x2
7

1
3

 −23x13x2
7

−1
4


−5x14x223x1−3x2

7
−15x112x2−92x112x2

7


18x1x2

7
−107x124x2

7

∴ T
1
1


19
7
−83

7
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3.3 Similarity :

We will see how the matrices of a linear transforation relative to two different bases
are related we note that :

1- Matrix of T relation to B : A
2– Matrix of T relation to B′ : A′

3- Transtion matrix from B′to B : P
4- Transtion matrix from B to B′ : P′

we now show the relationship among A , A′, P,P′

Tthis mean that

A′vB′  TvB

P−1APvB  TvB

this implis that

A′  P−1AP

vB  PvB

TvB  AvB

TvB  P−1TvB

Example (6):
Find the matrix A′for T : R2 → R2

Tx1,x2  2x1 − 2x2,−x1  3x2

relative to the basis B′  1,0, 1,1 ,B  1,0, −2,3

Solution :
We find the standrad matrix for T

A 
2 −2
−1 3

there transition matrix from B′ to the standrad basis B  1,0, 0,1 is
1,1  11,0  00,1
1,1  11,0  10,1

P 
1 1
0 1

,P−1 
1 −1
0 1

therefore the matrix from T relatire to B′ is
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A ′  P−1AP 
1 −1
0 1

2 −2
−1 3

1 1
0 1


3 −2
−1 2

Example (7):
Let B  −3,2, 4,−2 and B′  −1,2, 2,−2 be base for R2,

let A 
−2 7
−3 7

be the matrix for T,R2 → R2 relatire to B ,

Find A′, vB ,TvB and TvB for the coorditate matrix vB′ 
−3
−1

Solution :

A′  P−1AP

to find P we note that
−1,2  a−3,2  b4,−2  a  3,b  2

similarty,
2,−2  c−3,2  d4,−2  c  −2,d  −1

P 
3 −2
2 −1

, the P−1 
−1 2
−2 3

hence

A′ 
−1 2
−2 3

−2 7
−3 7

3 −2
2 −1


2 1
−1 3

since

vB′ 
−3
−1

,the

vB  PvB′ 
3 −2
2 −1

−3
−1


−7
−5

TvB  AvB


−2 7
−3 7

−7
−5


−21
−14

TvB′  P−1TvB

77




−1 2
−2 3

−21
−14


−7
0

or by

TvB′  A′vB′ 
2 1
−1 3

−3
−1


−7
0

Definition 3.3.1:
For square matrices A and A′ of order n,A′is said to be similer to A if there exists an

invertible matrix P such that

A′  P−1AP

Theorem 3.2.2 (similarity an equivelance reletion)
let A,B and C be square matrices of order n ,
Then the following properties are true
1) A is similer toA (reflexive)
2) If A is similer to B ,then B is similar to A (symmetric)
3) If A is similer to B and B is similar to C,then A (transitive)

Proof :
1)The first property follows from the fact that

A  In
−1AIn

 InAIn

2) A  P−1BP

PAP−1  PP−1BPP−1  B
Let Q  P−1

so Q−1AQ  B

3) Let A  P−1AP, B  Q−1CQ

A  P−1Q−1CQP
 P−1Q−1CQP
 QP−1CQP let R  QR
 R−1CR

so A is similer to C
∴ Similrity is an equivelance relation
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TABLE 1:Similarty Invariants

Property Description
Determinant A and P−1AP have the same determinant
Invertibility A is invertible if and only if P−1AP is invertimle

Rank A and P−1AP have the same rank
Nullity A and P−1AP have the same nullity
Trace A and P−1AP have the same trace

Characteristic polynomial A and P−1AP have the same characteristic polynomial
Eigenvalues A and P−1AP have the same eigenvalues

Eigenspace dimension

If  is an eigenvalue of A and P−1AP,then the
eigenspace of A corresponding to  and the

eigenspace of P−1AP corresponding to  have the
same dimension.
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Problem Set VI

(1) (a) Find the matrix A′ for T relative to the basis B′ and
(b) Show that A′ is similar to A, the standard matrix for T.

(i) T : R3 → R3, Tx,y, z  x,y, z.
B′  1,1,0, 1,0,1, 0,1,1.

(ii) T : R3 → R3, Tx,y, z  x − y  2z,2x  y − z,x  2y  z.
B′  1,0,1, 0,2,2, 1,2,0.

(2) Let B  1,1,0, 1,0,1, 0,1,1 and
B′  1,0,0, 0,1,0, 0,0,1 be basis for R3 ,and let

A 

3
2 −1 −1

2
−1
2 2 1

2
1
2 1 5

2

be the matrix for T : R3 → R3 relative to B.
(a)Find the transition matrix P from B′ to B.
(b)Use the matrices A and P to find vB and TvB′, where

vB′ 

1
0
1

.

(c) Find A′ (the matrix of T relative to B′) and P−1.
(d) Find [T(v)]B′ in two ways: first as P−1TvB and then as A′vB′

(3) Prove that if A and B are similar, then |A|  |B|

(4) Prove that if A is similar to B and B is similar to C, then A is
similer to C.

(5) Prove that if A and B are similer, then A2 is similer to B2.

(6) Let A  CD, where C is an invertible n  n matrix, Prove that
the matrix DC is similer to A.
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CHAPTER IV
Eigenvalues and Eigenvectors

4.1:Eigenvalues and Eigenvectors:

Here we introduce one of the most important problems in Linear Algebra,called the
eigenvalue problem.

Definition 4.1.1:
Let A be an n  n matrix ,the scalar  is called the eigenvalue of A if there is a nonzero

vector x such that

Ax  x

The vector x is called the eigenvector of A corresponding to .

Note:
eigenvectors can not be zero.

Theorem 4.1.2:
If A is an n  n matrix and  is a real number ,then the following are equivalent :
a)  is an eigenvalue of A.
b)The system of equation I − Ax  0 has nontrivial solution .
c) There is a nonzero vector x in Rn such that Ax  x.
d)  is a solution of the characteristic equation detI − A  0.

Example (1):

Find the eigenvalues and the basis for the eigenspace of A 

1 0 0 0
0 1 5 10
1 0 2 0
1 0 0 3

Solution :
The characteristic equation of A is :

|I − A| 

 − 1 0 0 0
0  − 1 −5 −10
−1 0  − 2 0
−1 0 0  − 3

  − 12 − 2 − 3  0

Thus the eigenvalues are   1,2,3

If   1
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0 0 0 0
0 0 −5 −10
−1 0 −1 0
−1 0 0 −2



1 0 0 2
0 0 1 −2
0 0 0 0
0 0 0 0

x12x4  0  x1  −2x4  −2t
Let x4  t
x3 − 2x4  0  x3  2x4  2t
x2  s

x 

x1

x2

x3

x4



−2t
s
2t
t

 t

−2
0
2
1

 s

0
1
0
0

So the basis of the eigenspace corresponding to 1  1 is
B1  0,1,0,0, −2,0,2,1

the basis of the eigenspace corresponding to 2  2 is B2  0,5,1,0
the basis of the eigenspace corresponding to 3  3 is B3  0,−5,0,1

4.2 :The Theorems of cayley-Hamilton .

There are many interesting result concerning the eigenvalues of a matrix .It says that
any matrix satisfies its own characteristic equation .

Let

Px  xn  an−1xn−1 . . . . . .a1x  a0

be a polynomial and let A be an n  nmatrix .Then power of A are defined and we
define :

PA  Anan−1  An−1 . . . . . . . .a1A  a0In     (1)

Example (2) :

LetA 
−1 4
3 7

and Px  x2 − 5x  3 .

Then PA  A2 − 5A  3In


−1 4
3 7

−1 4
3 7

− 5
−1 4
3 7

 3
1 0
0 1
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13 24
18 61


5 −20
−15 −35


3 0
0 3


21 4
3 29

(1) is polynomial with scalar coefficient defined for a matrix variable .We can also
define a polynomial with square matrix coefficient by :

Q  B0  B1  B22 . . . . . . .Bnn     (2)
If A is a matrix ,then we define :

QA  B0  B1A  B2A2 . . . . . . .BmAm     (3)
we must be carful in (3) since matrices do not commut under multiplication .

Theorem 4.2.1:
If P and Q are polynomials in the scalar variable  with square matrix

coefficients and if P  QA − I ,then

PA  0

Proof :
If Q is given by equation (2) ,then

P  B0  B1  B22 . . . . . .BnnA − I.

 B0A  B1A  B2A2 . . . . . . .BnAn − B0 − B12 − B23 −. . . . . . .−Bnn1     (4)

Then substituting A for  in (4) we obtain

PA  B0A  B1A2  B2A3 . . . . . .BnAn1 − B0A − B1A2 − B2A3 −. . . . . . . .−BnAn1  0

Theorem 4.2.2 : (The cayley-Hamilton Theorem ):
Every square matrix satisfies its own characteristic equation .That is ,If P  0 is the

characteristic equation of A , then

PA  0

Proof :
We have

P  detA − I 

a11 −  a12 . . . . a1n

a21 a22 −  . . . . a2n

   

an1 an2 . . . . ann − 

any cofactor of A − I is a polynomial in  .Thus the adjoint of A − I is ann  n
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matrix each of whose component is a polynomial in  .
That is

adjA − I 

p11 p12 . . . . p1n

p21 p22 . . . . p2n

   

pn1 pn2 . . . . pnn

This means that we can think of adjA − I as a polynomial Q , in with n  n

matrix coefficients .
To see this look at the following :

−2 − 2  1 22 − 7 − 4
42  5 − 2 −32 −   3


−1 2
4 −3

2 
−2 −7
5 −1

 
1 −4
−2 3

by Theorem let A be an n  n matrix .Then

adjAA 

detA 0 0 . . . . . 0
0 detA 0 . . . . 0
0 0 detA . . . . 0
    

0 0 0 . . . . detA

 detAI.

PI  detA − II  adjA − IA − I  QA − I     (5)

But

detA − II  PI

. if

p  n  an−1n−1 . . . . . . . . . . .a1  a0

then we define

P  PI  nI  an−1n−1 . . . . . . . . . . . .a1I  a0I.

Thus from (5) we have :

P  QA − I

Finally ,from Theorem 4.2.1

PA  0
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.

Example (3):

Let A 

1 −1 4
3 2 −1
2 1 −1

∴ |I − A| 
 − 1 1 −4
−3  − 2 1
−2 −1   1

  − 12 −  − 1 − −3 − 3  2 − 43  2 − 4  0
  − 12 −  − 1  3  1  4 − 8  0
 3 − 22 −     1  3  5 − 8  0
 3 − 22 − 5  6  0
Now , we compute

A2 

6 1 1
7 0 11
3 −1 8

, A3 

11 −3 22
29 4 17
16 3 5

and

A3 − 2A2 − 5A  6I 
11 −3 22
29 4 17
16 3 5



−12 −2 −2
−14 0 −22
−6 2 −16



−5 5 −20
−15 −10 5
−10 −5 5

In same situation the Caylely Hamilton theorem is useful in calculating the inverse
of a matrix . if A−1 exist and PA  0 , then

A−1PA  0

To illustrate , if

P   n  an−1n−1 . . . . . . . .a1  a0

then

PA  An  an−1An−1 . . . . .a1A  a0I  0

and

A−1PA  An−1  an−1An−2 . . . . . . .a2A  a1I  a0A−1  0

Thues

A−1  1
a0
−An−1 − an−1An−2 −. . . . . . . . .−a2A − a1I
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Note that a0 ≠ 0 because a0  detA and we assumed that A was invertible.

Example (4):

Let A 

1 −1 4
3 2 −1
2 1 −1

. .

Solution :

Then p  3 − 22 − 5  6
Here n  3 , a2  −2 , a1  −5 , a0  6

A−1  1
6 −A2  2A  5I

 1
6

−6 −1 −1
−7 0 −11
−3 1 −8



2 −2 8
6 4 −2
4 2 −2



5 0 0
0 5 0
0 0 5

 1
6

1 −3 7
−1 9 −13
1 3 −5

(4.3) : Eigenvalues of the powers of a matrix:-

Once the eigenvalues and eigenvectors of a matrix A are found its simple to find the
eigenvalues

and the eigenvectors of any positive integer power of A , for example if  is an
eigenvalue of A

and x is a corresponding eigenvectors , then
A2x  AAx  Ax

 Ax
 x  2x

which show that 2 is an eigenvalue of A2 and x is a corresponding eigenvectors.

Theorem 4.3.1:

If k is a positive integer ,  is an eigenvalue of a matrix A , and x is a corresponding
eigenvectors , then k is an eigenvalue of Ak and x is a corresponding eigenvector.

Example (5):

If A 

0 0 −2
1 2 1
1 0 3

we have   1 ,   2
from theorem   27  128 and   17  1 are eigenvalues of A7

we also have

86



x 

−1
0
1

and
0
1
0

are eigenvectors of A corresponding to the eigenvalue   2
they are also eigenvectors of A7 corresponding to   27  128

Similarly , the eigenvector
−2
1
1

of A corresponding to the eigenvalue   1

is also an eigenvector of A7 corresponding to   17  1 .

Remark :-
If an eigenvalue 1 occurs as a multiple root (k times) for the characteristic poly.

we say that 1 has multiplicity k , The multiplicity of an eigenvalue is greater than or
equal to the dimension of its eigenspace.

Example (6):

Find the eigenvalues and the corresponding eigenvectors for A 

2 1 0
0 2 0
0 0 2

Solution :

|I − A| 
 − 2 −1 0

0  − 2 0
0 0  − 2

  − 2 − 22  0    2

2I − Ax  0

0 −1 0
0 0 0
0 0 0

 x2  0 , x3  s , x1  t , s, t are not both zero

x 

t
0
s

 t
1
0
0

 s
0
0
1

, dim of eigenspace 2.
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PROBLEM SET VII
(1) Verify that  , is an eigenvalue of A and that xi is a corresponding eigenvector.

(i) A 
1 k
0 −1

, 1  1 , x1  1,0

(ii) A 
4 −5
2 −3

,
1  −1,x1  1,1
2  2,x2  5,2

(iii) A 

−2 2 −3
2 1 −6
−1 −2 0

,
1  5,x1  1,2,−1
2  −3,x2  −2,1,0
3  −3,x3  3,0,1

(2) Determine whether x is an eigenvector of A.

A 

−1 −1 1
−2 0 −2
3 −3 1

,

a) x  2,−4,6
b) x  2,0,6
c) x  2,2,0

d) x  −1,0,1

(3) Find:-
(a) the characteristic equation and (b) the eigenvalues (and corresponding

eigenvectors ) of the matrix.

(i)
6 −3
−2 1

(ii)
1 −2 1
0 1 4
0 0 2

(4) Demonstrate the Cayley-Hamilton Theorem for the given matrix .
The Cayley-Hamilton Theorem states that a matrix satisfies its
characteristic equation . For example,the characteristic equation

of A 
1 −3
2 5

is 2 − 6  11  0,

and therefore , by the theorem , we have A2 − 6A  11I2  0

(i)
4 0
−3 2

(ii)
1 0 −4
0 3 1
2 0 1
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(5) For an invertible matrix A ,prove that A and A−1 have the same eigenvectors.
How are the eigenvalues of A related to the eigenvalues of A−1 ?

(6) If the eigenvalues of A 
a b
0 d

are 1  0 and 2  1,

what are the possible values of a and d ?

(7) Find the dimension of the eigenspace corresponding to the eigenvalue 3.

(i) A 

3 0 0
0 3 0
0 0 3

(ii) A 

3 1 0
0 3 1
0 0 3

(8) a) Find the characteristic equation p  0 of the given matrix.
b) Verify that pA  0.
c) Use part (b) to compute A−1.

(i)
−2 −2
−5 1

(ii)
1 −1 0
−1 2 −1
0 −1 1

(9) Using the Cayley-Hamilton theorem compute A−1 of

A 

2 3 1
−1 1 0
−2 −1 4

.

89



4.4:Diogonalization :

Definition 4.4.2:
An n  n matrix A is diagonalizable if A is similar to a diagonal matrix D. That is,A

is diagonalizable
if there exists an invertible matrix P suth that

P−1AP  D

is a diagonal matrix.

Note:
Every diagonal matrix D is diagonolizable since the identity matrix can play the role

of P to give D  I−1DI
Theorem 4.4.2:

If A and B are similar n  n matrices ,then they have the same eigenvalues.

Proof :
since A and B are similar ,there exists an invertible matrix P such that

B  P−1AP

By properties of determinants
|I − B|  |I − P−1AP|

 |P−1IP − P−1AP|
 |P−1I − AP|
 |P−1 ||I − A||P|
 |P−1 ||P||I − A|
 |P−1P||I − A|
 |I − A|

This means that A and B have the same characteristic polynomial. Hence they must
have the same eigenvalues.

Example (7):
The following matrices A and D are similar

A 

1 0 0
−1 1 1
−1 −2 4

and D 

1 0 0
0 2 0
0 0 3

Find the eigenvalues of A and D ?

Solution :
Since D is a diagonal matrix , then its eigenvalues are 1  1 , 2  2 , 3  3
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since A is similar to B then A has the same eigenvalues 1  1 , 2  2 ,3  3

Theorem 4.4.3

An n  nmatrixA diagonalizable if and it hasn linearly independent eigenvectors

Proof .

First we assume that A is diagonalizable ,then there existe an invertible matrix P such
that P−1AP  D is diagonal

letting the main diagonal entries of D be1 ,2. . . . . . . . . .nand the column vectors of P
beP1,P2, . . . . , Pn produces

PD  P1P2 . . . . . . Pn 

1 0 . . . . 0
0 2 . . . . 0
  . . . . 

0 0 . . . . n

 1p12p2. . . . . . . . npn 

but since

AP  AP1AP2. . . . . . . .APn 

and P−1AP  D we have AP  PD which implies that

AP1AP2. . . . . .APn   1P12P2. . . . . . . . . nPn 

In other words ,APi  iPi for each column vector
This means that the column vectorsPi of P are eigenvectors of A
sinceP is invertible ,it column vectors are linearly indepent .This A has n linearly

independent eigenvectors
Conversly: assume A has n linearly independent eigenvectors P1,P2, . . . . . . . . , Pnwith

corresponding
let P be the matrix whose colums are thesen-eigenvectors ,that is P  P1P2. . . . . . Pn 
since each Piis an eigenvectors of A ,we have APi  iPi and

AP  AP1P2. . . . . Pn   1P12p2 . . . . . . . . . . .nPn 

The right hand matrix can be written as follows

AP  P1 P2 . . . . . Pn

1 0 . . . . . 0
0 2 . . . . . 0
  . . . . 

0 0 . . . . n

 PD

since the vectorsP1,P2, . . . . , Pn are linearly independent , P is invertible and we write
AP  PD

as P−1AP  D that is A is diogonalizable
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Steps for Diagonalizing an n  n Square Matrix
Let A be an n  n matrix.

1- Find n linearly independent eigenvectors p1,p2, . . . , pn for A,with corresponding
eigenvalues 1,2, . . . .n .If n linearly independent eigenvectors do not exist
,then A is not diagonalizable .

2-If A has n linearly independent eigenvectors ,let P be the n  n matrix whose
columns cosist of these eigenvectors .That is

P  p1p2. . . . . pn .

3-The diagonal matrix D  P−1AP will have the eigenvalues 1,2, . . . . . . . ,n on its
main

diagonal (and zeros elsewhere) Note that the order of eigenvectors used to form P will
determine

the order in which the eigenvalues appear on the main diagonal of D .

Example (8):A matrix that is not diagonalizable
Show that the following matrix is not diagonalizable

A 
1 2
0 1

Solution :
Since A is triangular , the eigenvalues are simply the entries on the main diagonal .
Thus the only eigenvalues is   1. The matrix I − A has the following reduced

row-echelon form

I − A 
0 −2
0 0

→
0 1
0 0

this implies that x2  0, and letting x1  t, we find that every eigenvector of A has the
form

x 
x1

x2


t
0

 t
1
0

.

Hence A does not have two linearly independent eigenvectors ,
and we conclude that A is not diagonalizable

Example (9): Diagonalizing a Matrix
Show that the following matrix is diagonalizable
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A 

1 −1 −1
1 3 1
−3 1 −1

then find a matrix P such that P−1AP is diagonal

Solution :

 I − A 

 − 1 1 1
−1  − 3 −1
3 −1   1

  − 1   2   − 3  0

thus 1  2 , 2  −2 ,3  3 .

If 1  2

∴
1 1 1
−1 −1 −1
3 −1 3

→

1 1 1
0 −4 0
0 0 0

→

1 0 1
0 1 0
0 0 0

x1  x3  0  x1  −x3  − t
x2  0 , let x3  t

x 

−t
0
t

 t
−1
0
1

If 2  −2

:.
−3 1 1
−1 −5 −1
3 −1 −1

→

1 0 −1
4

0 1 1
4

0 0 0

x1 − −1
4 x3  0  x1  4

4 t  t.
x2  1

4 x3  0  x2  − 4
4 t  −t.

let x3  4t .

x 

x1

x2

x3



t
−t
4t

 t
1
−1
4

If 3  3
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∴
2 1 1
−1 0 −1
3 −1 4

→

1 0 1
0 1 −1
0 0 0

x1  x3  0  x1  −x3  −t
x2 − x3  0  x2  x3  t
let x3  t .

x 

x1

x2

x3



−t
t
t

 t
−1
1
1

test of p1, p2, p3

1

−1
0
1

 2

1
−1
4

 3

−1
1
1



0
0
0

1  2  3  0

P 

−1 1 −1
0 −1 1
1 4 1

P−1 

−1 −1 0
1
5 0 1

5
1
5 1 1

5

P−1AP 

2 0 0
0 −2 0
0 0 3

Theorem 4.4.4: ( Sufficient condition for diagonalization )
If an n  n matrix A has n distinct eigenvalues ,then the corresponding eigenvectors are
linearly independent and A isdiagonalizable.

Proof :
let 1,2. . . . . . . . . .n be n distinct eigenvalues of A corresponding to the eigenvectors

x1,x2, . . . . . , xn,
to begin ,we assume that the set of eigenvectors is linearly dependent .Moreove,we

consider the eigenvectors
to be ordered so that the first m eigenvectors are linearly independent ,but the first

m  1 are dependent ,where m  n .
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then we can write xm1as alinear combination of the first m eigenvectors:

xm1  c1x1  c2x2 . . . . . . . .cmxm     Equation1

where ci are not all zero.Multiplication of both sides of equation 1 by A yields

Axm1  Ac1x1  Ac2x2 . . . . .Acmxm

m1xm1  c11x1  c22x2 . . . .cmmxm     Equation2

whereas multiplication of equation 1 by m1yields

m1xm1  c1m1x1  c2m1x2 . . . .cmm1xm     Equation3

Now subtracting equation 2 from equation 3 produces

c1m1 − 1x1  c2m1 − 2x2 . . . . . . . . . . . . .cmm1 − mxm  0

and, using the fact that the first m eigenvectors are linearly independent, we conclude
that all coefficients of this equation must be zero .that is,

c1m1 − 1  c2m1 − 2 . . . . . . . cmm1 − m  0

since all the eigenvalues are distinct, it follows that ci  0, i  1,2, . . . . . . . . . . ,m.but this
result contradicts our assumption

that xm1can be written as alinear combination of the first m eigenvectors.hence the set
of eigenvectors

is linearly independent,and from theorem7.5 we conclude that Ais diagonalizable.

Example (10):

Determine whether the matrix A 

1 −2 1
0 0 1
1 0 −3

is diagonalizable

Solution :
Since A is an upper triangular matrix,its eigenvalues are the entries of the main

diagonal
1  1, 2  0, 3  −3
since these three eigenvalues are distinct by thearem above A is diagonalazable.

Remark :
Remember that the condition in theorem(4.4.4) is sufficient but not necessary for

diagonalization.
A diagonalization matrix need not have distinct eigenvalues.

Theorem (4.4.5):
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let A be an n  n diagonalizable matrix and P an invertible n  n matrix such that
P−1AP  B is the diagonal form of A,

then we have
a) Bk  P−1AkP  P−1APP−1AP. . . . . . . . . . P−1AP
b) Ak  PBkP−1  PBP−1PBP−1. . . . . . . . PBP−1

P−1APk  P−1AkP

since P−1AP  D  A  PDP−1

Ak  PDkP−1     *

this last equation expresses the kth power of A in terms of the kth power of the diagonal
matrix D.

But Dk is easy to compute for
if

D 

d1 0 0
0 d2 0
0 0 dn

, then Dk 

d1
k 0 0

0 d2
k 0

0 0 dn
k

Example (11);

Use * to find A13where A 

0 0 −2
1 2 1
1 0 3

Solution :
we showed in before that the matrix A is diagonalizable by

P 

−1 0 −2
0 1 1
1 0 1

D  P−1AP 

2 0 0
0 2 0
0 0 1

A13  PD13P−1 

−1 0 −2
0 1 1
1 0 1

213 0 0
0 213 0
0 0 113

1 0 2
1 1 1
−1 0 −1



−8190 0 −163
8191 8192 1638
8191 0 1638
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PROBLEM SET VIII
1) Verify that A is diagonalizable by computingP−1AP

i) A 
−11 36
−3 10

, P 
−3 −4
−1 −1

ii) A 

−1 1 0
0 3 0
4 −2 5

, P 

0 1 −3
0 4 0
1 2 2

2) Show that the given matrix is not diagonalizable

i)
1 −2 1
0 1 4
0 0 2

ii)

1 0 −1 1
0 1 0 1
−2 0 2 −2
0 2 0 2

3)Find the eigenvalues of the matrix and determine whether there are asufficient
number to guarantee that the matrix is diagonalizable

3 2 −3
−3 −4 9
−1 −2 5

4)For each matrix A find (if possible) a nonsingular matrix P such that P−1AP is
diagonal.Verify thatP−1AP

is a diagonal matrix with the eigenvalues on the diagonal.

i) A 
0 1
1 0

ii) A 

1 0 0
1 2 1
1 0 2
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iii) A 

2 0 0 0
3 −1 0 0
0 1 1 0
0 0 1 −2

5) Find the indicated power of A

A 
10 18
−6 −11

, A6

6) Prove that if A is diagonalizable, then At is diagonalizable .

7) Prove that if A isdiagonalizable with n real eigenvalues 1,2, . . . . . . . . and n then

|A|  1,2, . . . . . .n

8) Find A11 where A 

−1 7 −1
0 1 0
0 15 −2
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4.5: Symmetric matrices and orthogonal
Diagonoalization

Definition 4.5.1
A square matrix A is symmetric if A  At

1) A nonsymmetric matrix may not be diagonalizable .
2) A nonsymmetric matrix can have eigenvalues that are not real
3) For a nonsymmetric matrix ,the number of L.I.N eigenvector corresponding to an

eigenvalue can
be less than multiplicity of the eigenvalue

Theorem 4.5.2
If A is ann  n symmetric matrix, then the following are true:
1) A is diagonalizable.
2) All eigenvalues of A are real.
3) If  is an eigenvalue of A with multiplicity k,then  has k linearly independent

eigenvectors.
that is ,the eigenspace of  has dimension k

Theorem(4.5.2)is called the real spectral theorem,and the set of eigenvalues of A is
called the spectrum of A

Example (12)
Find the eigenvalues of the symmetric matrix

A

3 1 0 0 0
1 3 0 0 0
0 0 2 1 1
0 0 1 2 1
0 0 1 1 2

Solution :
|I − A|   − 42 − 12 − 2
   4,1,2
where 1,2are repeated twice so the eigenspace corresponding to 1,2
are 2-diminsional and for 3 it 1-diminsional.

Definition 4.5.3:
A square matrix P is called orthogonal if ito invertible and
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P−1  Pt

Theorem 4.5.4:
An n  n matrix P is orthogonal iff its column vector form an orthonormal set.

Example (13):

Show that P 

1
3

2
3

2
3

−2
2 5

1
2 5

0

−2
3 2 5

−4
3 2 5

5
3 2 5

is orthogonal by showing that PPt  I.

Then show that the column vectors of P form an orthonormal set..

Solution :

PPt 

1
3

2
3

2
3

−2
5

1
5

0

−2
3 5

−4
3 2 5

5
3 2 5

1
3

−2
5

−2
3 5

2
3

1
5

−4
3 5

2
3 0 5

3 5



1 0 0
0 1 0
0 0 1

i.e, Pt  P−1 so P is orthogoanal
letting
P1  1

3 , −2
5

, −2
3 5

P2  2
3 , 1

5
, −4

3 5

P3  2
3 , 0, 5

3 5

we have 〈P1,P2   〈P1,P2   〈P2,P3 

‖P1‖  ‖P2‖  ‖P3‖  1

ThereforeP1,P2,P3is an orthonormal set.

Theorem 4.5.5:
let A be an n  n symmetric matrix .If 1and 2 are distinct eigenvalues of A ,then their

corresponding
eigenvectors x1 and x2 are orthogonal.

Proof :

let 1 and 2 be distinct eigenvalues of A with corresponding eigenvectors x1 and
x2,Thus

Ax1  1x1 and Ax2  2x2 .
To prove the theorem ,ito useful to start with the matrix from the dot product.
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x1  x2  x11 x12 . . . . . x1n

x21

x22



x2n

 x1
t x2

Now we can write
1x1x2  1x1  x2

 Ax1  x2
 Ax1 tx2
 x1

t Atx2
 x1

t Ax2
 x1

t 2x2
 x1  2x2
 2x1  x2

This implies that 1 − 2x1x2  0 and since 1 ≠ 2  x1  x2  0
Therefore x1and x2are orthogonal.

Example (14):

Show that any tow eigenvectors of A 
3 1
1 3

corresponding to distinet

eigenvalues are orthogonal

Solution :
A is syemmetric

The char. poly. of A is |I − A| 
 − 3 −1
−1  − 3

  − 2 − 4  0

1  2,2  4

Eigenvector corresponding to   2 is x1  s
1
−1

,s ≠ 0

Eigenvector corresponding to   4 isx2  t
1
1

,t ≠ 0

Therfore 〈x1,X2   1 − 1  0 , sox1,x2 are orthogonal.

Definition 4.5.6:

A matrix A is orthogonally diagonalizable if there exists an orthogonal matrix P such
that

P−1AP  D is diagonal .

Theorem 4.5.7:
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If A is an n  n matrix ,then the following are equivalent.
(a) A is orthogonally diagonalizable .
(b) A has an orthonormal set of n eigenvectors.
(c) A is symmetric.

Proof :
(a)(b): Since A is orthogonally diagonalizable,there is an orthogonal matrixP such

thatP−1AP  D is diagonal.
As shown in the proof of Theorem 7.2.1,the n column vectrs of P are eigenvectors of A.
Since P is orthogonal, these column vectors are orthonormal (see Theorem 6.5.1),
so that A has n orthonormal eigenvectors.

(b)(a): Assume that A has an orthonormal set of n eigenvectors P1,P2,P3,..........,Pn.
As shown in the proof of Theorem 7.2.1,the matrix P with these eigenvectors as

columns diagonally diagonalizesA.
Since these eigenvectors are orthonormal,P is orthogonal and thus orthogonally

diagonalizes A.

(a)(c):In the proof that (a)(b) we showed that an orthogonally diagonalizable n  n
matrix A is orthogonally diagonalized

by an n  n matrix P whose columns form an orthonormal set of eigenvectors of A.let D
be the diagonal marix

D  P−1AP
Thus,

A  PDP−1

or,sinceP is orthogonal

A  PDPT

Therefore,

AT  PDPTT  PDTPT  PDPT  A

which shows that A is symmetrice.
(c)(a):The proof of this part is beyond the scope of this text and will be omitted.

Note:
IfA is orthogonal
–The rowvector of A form an orthonormal set in Rn with the Eucldean inner product.
–The column vector ofA from an orthonormal set in Rm with Eucldean inner product.

Example (15): Determining whether amatrix is orthogonally diagonalizable
Which of the following are orthogonally diagonalizable?

A1 

1 1 1
1 0 1
1 1 1

A2 

5 2 1
2 1 8
−1 8 0
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A3 
3 2 0
2 0 1

A4 
0 0
0 2

By theorem 7.10 the only orthogonally diagonalizable matrices are the symmetric ones
: A1 and A4

Orthogonal Diagonalization of a Symmetric Matrix:

.Let A be ann  n symmetric matrix
1-Find all eigenvalues of A and determine the multiplicity of each.
2-For each eigenvalue of multiplicity 1,choose aunit eigenvector.(Choose any

eigenvector and then normalize it.)
3-For each eigenvalue of multiplicityk ≥ 2, find a set ofk linearly independent

eigenvectors.
(We know from theorem 7.7 that this is possible.)If this set is not orthonormal ,apply
the Gram-Schmidt orthonormalization process.
4-The composite of steps 2 and 3 produces an orthonormal set of n eigenvectors.
Use these eigenvectors to form the columns of P.The matrix P−1AP  PtAP  D will

be diagonal .
(The main diagonal entries of D are the eigenvalues of A.)

Example (16):
Find an orthogonal matrix P that diagonalizes A,

A 

4 2 2
2 4 2
2 2 4

Solution :
The char eq of A is

|I − A| 
 − 4 −2 −2
−2  − 4 −2
−2 −2  − 4

  − 22 − 8  0

so 1  2, 2  8

u1 

−1
1
0

, u2 

−1
0
1

form abasis for the eigenpoe correrponding to   2
Applying G.S.O.P.we get
w1  u1  −1,1,0

w2  u2 −
u2 ,w1

〈w1,w1 
w1

 −1,0,1 − 1
2 −1,1,0

103



 −1,0,1   1
2 ,− 1

2 , 0

 − 1
2 ,− 1

2 , 1

‖w1‖  1  1  2

‖w2‖  1
4  1

4  1  114
4  6

4  3
2

P1 

− 1
2

1
2

0

, P2 

− 1
6

− 1
6

2
6

the eigenspace corresponding to   8 has

u3 

1
1
1

as abasis Applaying G.S.O.P

P3 

1
3

1
3

1
3

, so

P 

− 1
2
− 1

6
1
3

1
2
− 1

6
1
3

0 2
6

1
3

which orthogonaliy diagonalizes A

PTAP 

− 1
2
− 1

2
0

− 1
6
− 1

6
2
6

1
3

1
3

1
3

4 2 2
2 4 2
2 2 4

− 1
2
− 1

6
1
3

1
2
− 1

6
1
3

0 2
6

1
3



2 0 0
0 2 0
0 0 8
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4.6 Applications of Eigenvalues and Eigenvectors systems of Differential Equations

One of the simplest differential equations is

y′  ay     (1)

where y  fx is an unknown function to be determined y′  dy
dx is its drivative and

a is aconstant
(1) has infinitly many solutions ,they are the functions of the form

y  Ceax

C :constant
Each function of this form is asolution of y′  ay
Since y′  Caeax  ay
sometimes the physical problem that generates a differential equation imposes some

added
condition that enable us to isolate one particular solution from the general solution.
A condition which specifies the value of the solution at a point is called (an initial

condition)
and the problem of solving a differential equation subject to an initial condition is
called (an initial-value problem).
We will concern with solving system of differential equation having the form:

y1
′  a11y1  a12y2 . . . . . . . .a1nyn

y2
′  a21y1  a22y2 . . . . . . . .a2nyn



yn
′  an1y1  an2y2 . . . . . . . .annyn

where
y1  f1x , y2  f2x , . . . . . . . . . . . , yn  fnx are functions to be

determined and the aij’s are constant.
it can be written in the form :

y1
′

y2
′

.
yn
′



a11 a12 . a1n

a21 a22 . a2n

. . . .
an1 an2 . ann

y1

y2

.
yn

or more briefly

y′  Ay

Example (17):
a) Write the following system in matrix form :
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y1
′  3y1

y2
′  −2y2

y3
′  5y3

b) Solve the system.
c) Find a solution of the system that satisfies the initial conditions:

y10  1 , y20  4 , y30  −2

Solution :
a)

y1
′

y2
′

y3
′



3 0 0
0 −2 0
0 0 5

y1

y2

y3

y′  Ay

b)

y1  C1e3x

y2  C2e−2x

y3  C3e5x

c)

1  C1e0  C1

4  C2e0  C2

−2  C3e0  C3

∴ y1  e3x , y2  4e−2x , y3  −2e5x.

y1

y2

y3



e3x

4e−2x

−2e5x

If A is not diagonal we make a substitution for y that will yield to a new system
with a diagonal coefficient matrix solve the new simpler system, and then use this
solution to determine the solution of the original system.
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4.6.1 Procedure for solving a system of First-order linear
differential equation:

1) Find a matrixP that diagonallizes A.
2) Make a substituation y  PU and y′  PU′ to obtain a new diagonal system

U′  DU ,where D  P−1AP .
3) Solve U′  DU .
4) Determine y from the equation y  PU .

Example (18):

a) Solve the system:

y1
′  y1  y2

y2
′  4y1 − 2y2

b) Find the solution that satisfies the initial condition
y10  1, y20  6

Solution :

a) The coefficient matrix for the system is A 
1 1
4 −2

A will be diagonalized by a matrix P whose columes are linearly independent
eigenvectors of A

so, |I − A| 
 − 1 −1
−4   2

 2   − 6    3 − 2  0

   −3,2

the eigenvectors corresponding to   2 is p1 
1
1

if   −3 p2 
− 1

4

1
p1,p2 are linearly independent since a1 − 1

4 a2  0
a1  a2  0

.........................
− 5

4 a2  0  a2  0
then a1  0

p 
1 − 1

4

1 1
diagonalizes A and D  p−1Ap 

2 0
0 −3

y  pU and y′  pU′

yields the new diagonal system
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u1
′

u2
′

 U′  DU 
2 0
0 −3

U

u1
′  2u1

u2
′  −3u2

from the solution of this system is :
u1  C1e2x

u2  C2e−3x U 
C1e2x

C2e−3x

So, y  PU yields as the solution for y

y 
y1

y2


1 − 1
4

1 1

C1e2x

C2e−3x


C1e2x − 1
4 C2e−3x

C1e2x  C2e−3x

y1  C1e2x − 1
4 C2e−3x

y2  C1e2x  C2e−3x

b) y10  1 , y20  6

1  C1 − 1
4 C2

6  C1  C2
 C1  2 , C2  4

then y  2e2x  4e−3x

Example (19):
Solve the following system of linear differential equations :-
y1
′  3y1  2y2

y2
′  6y1 − y2

Solution :

First we find a matrix P that diagonalizes A 
3 2
6 −1

The eigenvalues of A are 1  −3 ,and 2  5 , with corresponding eigenvectors
v1  1,−3 and v2  1,1. Since the eigenvalues are distinct.
we know that we can diagonalize A by using the matrix p whose columns consist
of the eigenvectors v1 and v2.That is,

P 
1 1
−3 1

and D  P−1AP 
−3 0
0 5

The system represented by w′  P−1APw has the following form
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w1
′

w2
′


−3 0
0 5

w1

w2
 w1

′  −3w1, w2
′  5w2

The solution to this system of equation is
w1
′  C1e−3t

w2
′  C2e5t

To return to the original variable y1 and y2 , we use the substitution y  pw
and write

y1

y2


1 1
−3 1

w1

w2

which implies that the solution is
y1  w1  w2  C1e−3t  C2e5t

y2  −3w1  w2  −3C1e−3t  C2e5t.
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4.6.2 Quadratic Form:

Aquadratic form in tow variablex and y is defined to be

ax2  2bxy  cy2     1

The following are quadratic forms in x and y

2x2  6xy − 7y2 a  2, b  6, c  −7
4x2 − 5y2 a  4, b  0, c  −5
xy a  0, b  1

2 , c  0

(1) can be written in the form

ax2  2bxy  cy2  x y
a b
b c

x
y

 xTAx

the digonal entries the coefficients of the squared terms and the entries off the main
digonal are each half the

coefficient of the product term xy

2x2  6xy − 7y2  x y
2 3
3 −7

x
y

4x2 − 5y2  x y
4 0
0 −5

x
y

xy  x y
0 1

2
1
2 0

x
y

Definition 4.6.3:
Aquadretic form in the n variables x1,x2, . . . . . . . . . , xn is an expression that can

be written as
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x1x2. . . . . . . . . . . . xn A

x1

x2



xn

 xTAx     (2)

where A is asymmutric n  n matrix.
(2) can be written more compactily as xTAx

xTAx  a11x1
2  a22x2

2 . . . .annxn
2 ∑ aijxixj

where∑ i≠j aijxixj denotes the sum of all terms of the form aijxixj where xi, xjare
different variables.

The term aijxixj are called the cross product terms of the quadratic form.
Symmetric matrices are useful but not essential for reoresent quadratic forms
for example 2x2  6xy − 7y2 we might split the coefficint of the cross product term into

5  1 or 4  2 then

2x2  6xy − 7y2  xy
2 5
1 −7

x
y

or

2x2  6xy − 7y2  xy
2 4
2 −7

x
y

we will always use symmetric matrices, when we denote xTAx i.e, A is symmetric

Remark 4.6.4:
If A is symmetric then A  AT, then xTAx  xTAx  〈Ax,x  〈x,Ax

Example (20):
The following is a quadratic form in x1,x2 and x3 varible

x1
2  7x2

2 − 3x3
2  4x1x2 − 2x1x3  6x2x3  x1x2x3 

1 2 −1
2 7 3
−1 3 −3

x1

x2

x3

Note that the coefficient of the sequared terms appear on the main diagonal of the3  3
matrix
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coefficient of position in matrix A
x1x2 a12 and a21

x1x3 a13 and a31

x2x3 a23 and a32

4.6.5 Problems involving quadratic forms:

Theorem 3.6.6:
let A be a symmetricn  n matrix whose eigenvalues in decreasing size order are

1 ≥ 2 ≥. . .≥ n.
if x is constrainted so that ‖x‖  1 relative to the Eucliden inner product on Rn then:
a) 1 ≥ xTAx ≥ n
b) xTAxn if x is an eigenvector of A corresponding to n and xTAx  1 if x is an

eigenvector of A corresponding to 1.
it follows from that therorem that subject to the constraint

‖x‖  x1
2  x2

2 . . . .xn
2

1
2  1

the quadratic form xTAx has a maximum value of 1(the largest eigenvalue) and a
minimum value of n (the smallest eigenvalue).

Example (21):

Find the maximum and minumum values of the quadratic form x1
2  x2

2 . . . .4x1x2
subject to the constraint

x1
2  x2

2  1, and the values ofx1 andx2 at which the maximum and minimum occurs

x1
2  x2

2  4x1x2  x1x2
1 2
2 1

x1

x2

Solution :

|I − A| 
 − 1 −2
−2  − 1

 2 − 2 − 3   − 3  1  0

then the eigenvalues of A are   3,  −1 which are the maximum and the miniumum
values respectivily of the quadratic

form subject to the contraint. To find values of x1 and x2 we find the eigenvalues
corresponding to eigenvalues

then normalize then to satisfy the condition
x1

2  x2
2  1

if   3
1
1

, if   −1
1
−1

normolizing these eigenvalues
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1
2

1
2

,
1
2

−1
2

Thus subject to constraint x1
2  x2

2  1
The maximum value of the quadratic form is   3 which occurs if x1  1

2
,

x2  1
2

and the minumum value
is   −1 which occurs ifx1  1

2
, x2  − 1

2

Definition 4.6.7:
A quadratic form xTAx is called positive definite if xTAx  0 for allx ≠ 0 , and a

symmetric matrix A is called
a positive definite matrix if xTAx is a positive definite quadratic form.

Theorem 6.6.8:
A symetric matrix A is positive difinite iff all the eigenvalues of A are positive.

Example (22):

In ex. before we showed that A 

4 2 2
2 4 2
2 2 4

has eigiivalues   2,8 since these are positive, the matrix A is definite and for all x
≠ 0

xTAx  4x1
2  4x2

2  4x3
2  4x1x2  4x1x3  4x2x3  0

if A 

a11 a12 . . . a1n

a21 a22 . . . a2n

: : : :
an1 an2 . . ann

is a square matrix

then the preinicible submatrices of A are the submatrices from the first r rows and r
colums of A for r  1,2, , . . . , n

These submatrices are

A1  a11  , A2 
a11 a12

a21 a22
, A3 

a11 a12 a13

a21 a22 a23

a31 a32 a33
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..........An  A 

a11 a12 . . . a1n

a21 a22 . . . a2n

: : : :
an1 an2 . . ann

Theorem 4.6.9:
A symmetric matrix A is positive definitie iff the detrminant of every principal

submatrix is positive.

Example (23):

The matrix A 

2 −1 −3
−1 2 4
−3 4 9

is positive definite since

|A1 |  |2|  2 , |A2 | 
2 −1
−1 2

 4 − 1  3

, |A3 | 
2 −1 −3
−1 2 4
−3 4 9

 1

all of which are positive, thus all eigavalues of A are positive and xTAx  0 for all
x ≠ 0

2x1
2  2x2

2  9x3
2 − 2x1x2 − 6x1x3  8x2x3  0
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4.7:Diagonalizing Quadratic forms ,Conic sections:

Lit xTAx be a quadratic form in the variables x1,x2, . . . . . . . x where A is symmetric : if
Porthogonally diagonalizes A

and if the new variabiles y1,y2, . . . . . . . , yn are defined by the equation x  py ,
then substituting this equation in xTAx yields

xTAx  yTDy  1y1
2  2y2

2 . . . . . . . .nyn
2

where 1,2, . . . . . . . ,n are the eigenvalues of A and

D  pTAp 

1 0 . . . . . . . . 0
0 2 . . . . . . . . 0
: : . :
0 0 . . . . . . . . n

the matrix P orthogonally diagonalizes the quadratic form or reduse the quadratic form
to a sum of squares.

Example .(24):
Find a change of variables that will reduce the quadratic form x1

2 − x3
2 − 4x1x2  4x2x3

to the sum of squares
and express the quadratic form in terms of the new variables?

Solution :

the quadratic form is written as x1 x2 x3

1 −2 0
−2 0 2
0 2 −1

x
y
z

|I − A| 
 − 1 2 0

2  −2
0 −2   1

 3 − 9  2 − 9   − 3  3  0

  0 ,  −3 ,  3

v1 

2
1
2

 p1 

2
3
1
3
2
3
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v2 

−1
−2
2

 p2 

−1
3
−2
3
2
3

v3 

−2
2
1

 p3 

−2
3
2
3
1
3

∴ P 

2
3

−1
3

−2
3

1
3

−2
3

2
3

2
3

2
3

1
3

X  PY

x1

x2

x3

 P
y1

y2

y3

D  pTAp 

0 0 0
0 −3 0
0 0 3

∴ yTDy  xTAx  −3y2
2  3y3

2

y1 y2 y3 D
y1

y2

y3

4.7.2:Eliminating the cross product term
Every conic section in the xy plane has an equation of the form:

ax2  cy2  2bxy  dx  ey  f  0

can be written in the form

x y
a b
b c

x
y

 d e
x
y

 f  0

or
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xTAx  kx  f  0

where

x 
x
y

, A 
a b
b c

, k  d e

Now consider aconic C whose eq. in xy-coordinate is

xTAx  kx  f  0

we would like to rotate the xy-coordinate axes so that the eq. of the conic in the new
x ′y ′-coordinate

system has no cross product term this can be done follows:

step(1):

Find a matrix P 
p11 p12

p21 p22
that orthogonally diagonalizes the quadratic form

xTAx

step(2):
Interchange the columns of P ,if necessary ,to make detp  1.This assures that
the orthogonal coordinate transformation ,|p|  1

x  Px ′ , that is ,
x
y

 P
x ′

y ′
    (5)

is a rotation.
step(3):

To obtain the equation for C in the x ′y ′-system ,substitute (5) into (4) this yields

Px ′TAPx ′  kPx ′  f  0

or

x ′TpTApx ′  f  0     (6)

since P orthogonally diagonalizes A,

PTAP 
1 0
0 2

where 1and 2 are eigenvalues of A.thus ,(6) can be rewritten as

x ′ y ′ 1 0
0 2

x ′

y ′

 d ′ e ′ p11 p12

p21 p22

x ′

y ′
 f  0

or

117



1x ′2  2y ′2  d ′x ′  e ′y ′  f  0

(where d ′  dp11  ep21 and e ′  dp12  ep22. This equation has no cross-poduct term.
The following theorm summarizes this discussion.

Theorem 4.7.3 (Principle Axes Theorem for R2)
Let

ax2  2bxy  cy2  dx  ey  f  0

be the equation of a conic C,and let

xTAx  ax2  2bxy  cy2

be the associated quadratic form .then the coordinate axes can be rotated so that the
equation for C

in the new x ′y ′-coordinate system has the form

1x ′2  2y ′2  d ′x ′  e ′y ′  f  0

where 1and2are the eigenvalues of A.The rotation can be accomplished by the
substitution

x  Px ′

where p orthogonally diagonalizes xTAx and detP  1.

Example (25) :
Describe the conic C whose equation is 5x2 − 4xy  8y2 − 36  0 ” This equation in

the form xTAx − 36  0 ”

A 
5 −2
−2 8

Solution :

|I − A| 
 − 5 2

2  − 8
  − 9 − 4  0

if   4
−1 2
2 −4


1 −2
0 0
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x1 − 2x2  0
x1  2x2  2t

x2  t

x  t
2
1

v1 

2
5

1
5

if   9

x 
−1
2

, v 

−1
5

2
5

P 

2
5

−1
5

1
5

2
5

 |P|  1

PTAP 
4 0
0 9

x′ y′
4 0
0 9

x′

y′
− 36  0

4x′2  9y′2 − 36  0
4x′2  9y′2  36
x′2
32  y′2

42  1

which is an equation of an ellipse

Example (26):
Describe the conic C whose equation is

5x2 − 4xy  8y2  20
5

x  80
5

y  4  0

Solution :
The matrix form of this equation is
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xTAx  kx  4  0

A 
5 −2
−2 8

, k  d e  20
2

, −80
5

we find P first eigenvalue then the eigenvector normalize then we find

P 

2
5

−1
5

1
5

2
5

, |P|  1

PTAP 
4 0
0 9

, kp  20
5

−80
5

2
5

−1
5

1
5

2
5

 −8 −36

x′ y′
4 0
0 9

x′

y′
 −8 −36

x′

y′
 4  0

4x′2  9y′2 − 8x − 36y  4  0
4x′2 − 8x′  9y′2 − 36y′  −4
4x′2 − 2x′  9y′2 − 4y′  −4
4x′2 − 2x′  1  9y′2 − 4y′  4  −4  4  36
4x′ − 12  9y′ − 22  36

we translate the cordinate axes by many of the translation equations
let x′ − 1  x′′ , y′ − 2  y′′
then

4x′′2  9y′′2  36

x′′2
32  y′′2

22  1

which is an equation of the ellipse

Note:

x2

k2  y2

l2  1 , k, l  0 is an equation of Ellipse or circle

x2

k2 −
y2

l2  1 , k, l  0 Hyperbola

y2

k2 − x2

l2  1 , k, l  0 Hyperbola
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y2  kx prapola

x2  ky prapola

4.7.4 Quadric Surfaces
An equation of the form:

ax2  by2  cy2  2dxy  2exz  2fyz  gx  hy  iz  j  0     1

where a,b, . . . . . . , f are not all zero is called a quadratic eq.in x,y and z , the expression

ax2  by2  cz2  2dxy  2exz  2fyz

is called the associated quadretic form eq.(1) can be written in the matrix form

x y z
a d e
d b f
e f c

x
y
z

 g h i
x
y
z

 j  0

or

xTAx  Kx  j  0

where

x 

x
y
z

, A 

a d e
d b f
e f c

,K  g h i

Example (27):

The quadratic form associated with the quadratic equation

3x2  2y2 − z2  4xy  3xz − 8yz  7x  2y  3z − 7  0

is:

3x2  2y2 − z2  4xy  3xz − 8yz

graphs of quadric equations in x,y and zero called quadratics or quadric surfaces.

Example (28):
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Describe the quadric surface where equation is :

4x2  36y2 − 9z2 − 16x − 216y  304  0

4x2 − 9x  36y2 − 6y − 9z2  −304

4x2 − 4x  4  36y2 − 6y  9 − 9z2  −304  16  334

4x − 22  36y − 32 − 9z2  36

x − 22

9  y − 32

1 − z2

4  1

Translating the axes  by means of the transtalion eq.

x ′  x − 2 ,y ′  y − 3 , z ′  z

yields to:

x ′2

9  y ′2 − z ′2

4  1

which is the eq. of a hyperboloid.

4.7.5 ELIMINATING Cross product terms:-
let Q be a quedric surface whose eq. in xyz -coordinates is

xTAx  kx  j  0     2

we want to rotate the xyz - coordinate axis to
the new x′y′z ′- coordinate system has no cross
product terms by

1. Find a matrix P that orthogonally diagonalizes xTAx
2. Interchange two columms of P , if necessary,

to make detP  1

x  Px′, that is
x
y
z

 P
x′

y′

z ′
    3

is a votation
3 Substitute (3) in to (2) this will producce the eq.

for the quadric in x′y′z ′ - coordinates with no-cross.product
terms.

Theorem 4.7.6(principal Axes theorem for R3):
let
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ax2  by2  cz2  2dxy  2exz  2fyz  gx  hy  iz  j  0

be the eq. of a quadric Q and let

xTAx  a2x  by2  cz2  2dxy  2exz  2fyz

be the associated quadratec form.The coordinate axis can be
rotated so that the eq. of Q in the x′y′z ′coordinate system has
the form

1x1
′2  2y′2  3z ′2  g′x′  h′y′  i ′z ′  j  0

where 1,2,3 are eigenvalues of A .The rotation
can be accomplished by the substitution

x  Px′

where P orthogonally diagonalizes xTAx and detP  1

Example (29):
Describe the quadric surface whose equation is

4x2  4y2  4z2  4xy  4xz  4yz − 3  0
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The matrix form is

xTAx − 3  0

where

A 

4 2 2
2 4 2
2 2 4

the eigenvalues of A are   2,8 and A is orthogonally

diagonialzable by P 

−1
2

−1
6

1
3

1
2

−1
6

1
3

0 2
6

1
3

, |P|  1 verify??

x  Px′

Px′TAPx′ − 3  0

x′TPTAPx′ − 3  0     5

PTAP 

2 0 0
0 2 0
0 0 8

so (5) becomes

x′ y′ z ′
2 0 0
0 2 0
0 0 8

x′

y′

z ′
− 3  0

2x′2  2y′2  8z ′2  3  x′2
3/2  y′2

3/2  z ′2
3/8  1

which is eq. of an ellipsoid.
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PROBLEM SET IX
(1) Determine whether the given matrix is symmetric.

(i)
1 −1
−1 4

(ii)
0 1 2
1 0 −3
2 −3 0

(2) Find the eigenvalues of the given symmetric matrix. For each eigenvalue ,
find the dimension of the cooresponding eigenspace.

(i)
1 2
2 1

(ii)
3 0 0
0 2 0
0 0 2

(3) Determine whether the given matrix is orthogonal.

(i)
2
2

2
2

− 2
2

2
2

(ii)

2
2

− 6
6

3
3

0 6
3

3
3

2
2

6
6

− 3
3

(iii)

1
10 10 0 0 −3

10 10

0 0 1 0
0 1 0 0

3
10 10 0 0 1

10 10

(4) Find an orthogonal matrix P such that PtAP diagonalizes A
Verify that PtAP gives the proper diagonal form.

(i) A 
2 2
2 1
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(ii) A 

0 10 10
10 5 0
10 0 −5

(5) Prove that if A is an m  n matrix,then AtA and AAt are symmetric.

(6) Prove that if A is an orthogonal matrix ,then |A|  1

(7) Solve the given system of first-order linear differential equations.

(i)
y1
′  2y1

y2
′  y2

(ii)
y1
′  −y1

y2
′  6y2

y3
′  y3

(8) Solve the given system of first-order linear differential equations.

(i)
y1
′  y1 −4y2

y2
′  2y2

(ii)
y1
′  −3y2 5y3

y2
′  −4y1 4y2 −10y3

y3
′  4y3

(9) Write out the system of first-order linear differential equations represented by
the matrix equation y ′  Ay .Then verify the indicted general solution .

A 

0 1 0
0 0 1
0 −4 0

,
y1  C1  C2 cos2t  C3 sin2t
y2  2C3 cos2t − 2C2 sin2t
y3  −4C2 cos2t − 4C3 sin2t

(10) Find the matrix of the quadratic form associated with the given equation
(i) 9x2  10xy − 4y2 − 36  0
(ii) 10xy − 10y2 − 4x − 48  0

(11) Find the matrix A of the quadratic form associated with the given equation.
In each case eigenvalues of A and an orthogonal matrix P such that PtAP

is diagonal.
(i) 13x2  6 3 xy  7y2 − 16  0.
(ii) 16x2 − 24xy  9y2 − 60x − 80y  100  0.
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(12) Use the Principal Axes Theorm to perform a rotation of axes to eliminate the
xy −term in the given quadratic equation .Identify the resulting rotated conic and
give its equation in the new coordinate system.

(i) 13x2 − 8xy  7y2 − 45  0
(ii) 2x2  4xy  2y2  6 2 x  2 2 y  4  0
(iii) xy  x − 2y  3  0

(13) Find the matrix A of the quadratic form associated with the given
equation.Then find the equation of the rotated quadric surface in which
the xy,xz and yz terms have been eliminated.
(i) 3x2 − 2xy  3y2  8z2 − 16  0
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Problem Set X

(1) In each part find a change variables that reduces the quadratic form to a sum or
difference of square and express the quadratic form in terms of the new variables:

(a) 5x1
2  2x2

2  4x1x2  0 (b) 3x1
2  4x2

2  5x3
2  4x1x2 − 4x2x3  0

(c) 2x1x3  6x2x3  0

(2) Find the quadratic form associated with the following then express each of the
quadratic equations in the matrix form:

xTAx  kx  f  0

(a) 2x2 − 3xy  4y2 − 7x  2y  7  0 (b) y2  7x − 8y − 5  0

(3) Express each of the quadratic equation in the matrix form :

xTAx  kx  j

3x2  7z2  2xy − 3xz  4yz − 3x  4

(4) In each part determine the transtation equations that will put the quadric in
standard posetion:

(a) 3x2 − 3y2 − z2  42x  144  0
(b) 9x2  36y2  4z2 − 18x − 144y − 24z  153  0

(5) In the following find a rotation x  px ′ that removes the cross-product term
and give its equations in the x ′y ′z ′ system:

(a) 4x2  4y2  4z2  4xy  4xz  4yz − 5  0
(b) 2xy  z  0

Chapter X
Complex Vector Space

5.1: Complex number:

For many important application of vector its desirable to allow the scalors to be complex
numbers

a vector spase that allow complex scalars is called a complex vector space.
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In the begining of this chapter we will review some of the basis properties of comblex
numbers.

since x2 ≥ 0 for every real number x , the equation x2  1
has no real solution Todeal with this problem mathematicias of the eighteenth century

introduced the imaginary number
so

i  −1

i2   −1 2  −1

Definition (5.1.1):
A complex number is an ordered pair of real numbers , denoted either by a,b or

a  bi.
we denote the complex number by z,so

z  a  bi

where a is called the real part of z denoted by Rez and b is the imaginary part of z
denoted by Imz.

For example:
Re4 − 3i  4 and Im4 − 3i  −3

when complex numbers are represented geometrically in an xy-coordniate system ,
the x-axis is called the real axis , the y-axis is the imaginary axis and the plane is called

the complex plane.

Definition 5.1.2:

Two complex numbers a  bi and c  di are equal a  bi  c  di if a  c and b  d
propirties of complex numbers:
i) a  bi  c  di  a  c  b  di
ii) a  bi − c  di  a − c  b − di
iii) ka  bi  ka  kbi , k real
iv) −1z  z  0
v) −1z  −z , is the negative of z

Example (1):
If z1  4 − 3i and z2  −2  5i find z1  z2 , z1 − z2, 3z1, and −z2

Solution :
z1  z2  2  2i
z1 − z2  6 − 8i
3z1  12 − 9i
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−z2  2 − 5i

Multiplication of complex number
a  bic  di  ac  bdi2  bci  adi

 ac − bd  ad  bci

Example (2):
Find 3  2i4  5i  12 − 10  15  8i

 2  23i

find i2

i2  0  i0  i  0.0 − 1.1  0.1  0.1  −1

Verify the following:
z1  z2  z2  z1
z1z2  z2 z1
z1  z2  z3  z1  z2  z3
z1z2z3  z1z2z3
z1z2  z3  z1z2  z1z3
0  z  z
z  −z  0
1.z  z

Example (3):

If A 
1 −i

1  i 4 − i
and B 

i 1 − i
2 − 3i 4

then

A  B 
1  i 1 − 2i
3 − 2i 8 − i

A − B 
1 − i −1
−1  4i −i

iA 
i 1

−1  i 1  4i

AB 
−3 − i 1 − 5i
4 − 13i 18 − i
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PROBLEM SET XI

(1) In each part plot the point and sketch the vector corresponds to the given coplex
number.

(a) 2  3i (b) − 3 − 2i

(2) In each part use the given information to find the real numbers x and y.
(a) x − iy  −2  3i (b) x  y  x − yi  3  i

(3) Given that z1  1 − 2i and z2  4  si find
(a) z1  z2 (b) z1 − z2 (c) 4z1
(d) −z2 (e) 3z1  4z2 (f) 1

2 z1 − 3
2 z2

(4) In each part solve for z.
(a) z  1 − i  3  2i (b) −5z  5  10i (c) i − z  2z − 3i  −2  7i

(5) In each part find real numbers k1 and k2 that satisfy the equation.
k12  3i  k21 − 4i  7  5i

(6) In each part find z1z2 , z1
2, and z2

2

(a) z1  3i, z2  1 − i (b) z1  1
3 2  4i, z2  1

2 1 − 5i
(7) Perform the calculations and express the result in the form a  bi

(i) 1  2i4 − 6i2

(ii) i1  7i − 3i4  2i
(iii) 1  i  i2  i3100

(8) Let

A 
1 i
−i 3

B 
2 2  i

3 − i 4
Find

(a) A  3iB (b) B2 − A2

(9) Let

A 

3  2i 0
−i 2

1  i 1 − i
B 

−i 2
0 i

C 
−1 − i 0 −i

3 2i −5

Find
(a) ABC (b)CAB2 (C) 1  iAB  3 − 4iA
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5.2: Modulus,Complex conjugate,Division
Definition 5.2.1:

If z  a  bi is any complex number ,then the congugate of z denoted by z is defined
by

z  a − bi

if z  3  2i , z  3 − 2i
z  −4 − 2i , z̄  −4  2i
z  i , z̄  −i
z  4 , z̄  4

Definition 5.2.2:
The modulus of a complex number z  a  bi,denoted by |z|, is defined by

|z| a2  b2

The modulus of real number is simply its absolute value

Example :
Find |z| if z  3 − 4i

|z| 9  16  25  5

Theorem 5.2.3:
For any compex number z,
zz̄  |z|2

Proof :
If z  a  bi ,then
zz̄  a  bia − bi
 a2 − abi  abi − b2i2

 a2  b2  |z|2

Theorem 5.2.4:
If z2 ≠ 0, then equation z1  z2z has a unique solution which is (z  z1

z2 )

z  1
|z2|2

z1z̄2

Proof :
let z  x  iy, z1  x1  iy1 and z2  x2  iy2 ,then
z1  z2z will be

x1  iy1  x2  iy2x  iy

or
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x1  iy1  x2x − y2y  iy2x  x2y

on equating real and imaginary parts

x2x − y2y  x1

y2x  x2y  y1

i.e

x2 −y2

y2 x2

x
y


x1

y1

since z2  x2  iy2 ≠ 0 it follows that x2and y2 are not both zeros so

x2 −y2

y2 x2
 x2

2  y2
2 ≠ 0

Thus by cramers rule

x 

x1 −y2

y1 x2

x2 −y2

y2 x2

 x1x2  y1y2

x2
2  y2

2  x1x2  y1y2

|z2|2

y 

x2 x1

y2 y1

x2 −y2

y2 x2

 x2y1 − x1y2

x2
2  y2

2  x2y1 − x1y2

|z2|2

Thus z  x  iy  1
|z2|2

x1x2  y1y2  ix2y1

 1
|z2|2

x1  iy1x2 − iy2

 1
|z2|2

z1z̄2

Thus for z2 ≠ 0 we define
z1
z2

 1
|z2|2

z1z̄2

Example (4):
Express 34i

1−2i in the form a  bi

Solution :
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34i
1−2i  1

|1−2i|2
3  4i1  2i

 1
5 −5  10i

 −1  2i
or

34i
1−2i . 12i

12i  −510i
5  −1  2i

Example (5):
Use Cramers Rule to solve.

ix  2y  1 − 2i
4x − iy  −1  3i

Solution :
x  |A1|

|A| , y  |A2|
|A| , |A| i

4
2
−i  −7

|A1|
1 − 2i 2
−1  3i −i

 −i − 2  2 − 6i  −7i

∴ x  −7i
−7  i

|A2|
i 1 − 2i
4 −1  3i

 −i − 3 − 4  5i  −7  7i

∴ y  −77i
−7  1 − i

Theorem 5.2.5:
For any complex numbers z , z1, and z2
a) z1  z2  z1  z2
b) z1 − z2  z1 − z2
c) z1z2  z1z2
d)  z1

z2  
z1
z2

Proof :
(a) Let z1  a1  b1i , z2  a2  b2i ,then

z1  z2  a1  a2  b1  b2i
 a1  a2 − b1  b2i
 a1 − b1i  a2 − b2i
 z1  z2

(c) z1z2  a1a2 − b1b2  b1a2  a1b2i
 a1a2 − b1b2 − b1a2  a1b2i
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 a1 − b1ia2 − b2i
 z1z2

(e) z  a − bi
 a  bi
 z

Remark 4.2.4:
z1  z2 . . . . . . . .zn  z1  z2 . . . . . . . . .zn

z1z2. . . . . . . . . . zn  z1z2. . . . . . . . . zn
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5.3 Polar Form;Demoivrs Theorem:

If z  x  iy is a non zero complex number,
r  |z| and  the angle from the real axes to the vector z.
Then x  r cos x

r  cos
y  r sin  y

r  sin
so z  x  iy can be written as

z  r cos  ir sin
z  rcos  i sin is called the polar form of z

 is called an argument of z and is denoted by

  argz

but its not unique since we can add or subtract any multiple of 2 to produce another
value of the argument,

there is only one value of the argument in radius that satisfies −    
This is called the principle argument of z denoted by   Argz

Example (6):
Exprce the following complex numbers in polar form using the principle arguments
(a) z  1  3 i
(b) z  −1 − i

Solution :
(a) r  |z|  4  2

x  1, y  3 ,
then 1  2cos,

3  2sin
cos  1

2 , sin  3
2

The only value of  such that −   ≤  is   
3  60∘

Thus the polar form

z  2cos 3  i sin 
3 

(b) r  |z|  2 z  −1 − i
x  −1, y  −1
− 1  2 cos
− 1  2 sin

cos  −1
2

, sin  −1
2

The only value of  that satisfies these relations and − ≤  ≤ 
is   −3

4  −135∘
or 225∘  5 

4
Thus the polar form of z is
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z  2 2 cos −3
4   i sin −3

4  −  ≤  ≤ 

Since z1  r1cos1  i sin1 and z2  r2cos2  i sin2

z1z2  r1r2cos1 cos2 − sin1 sin2  isin1 cos2  cos1 sin2

since cos1  2  cos1 cos2 − sin1 sin2
sin1  2  sin1 cos2  cos1 sin2

hence

z1z2  r1r2cos1  2  i sin1  2

Note that

|z1z2 |  |z1 ||z2 |
argz1z2  argz1  argz2

The product of two complex numbers is obtained by multiplying
their moduli and adding their arguments
Now

z1
Z2

 r1
r2
cos1 − 2  i sin1 − 2

where

| z1
z2 |  |z1 |

|z2 | if z2 ≠ 0

arg z1
z2   argz1 − argz2

Example (7):
Let z1  1  3 i z2  3  i
then their polar forms are
z1  2cos 

3  i sin 
3 

z2  2cos 
6  i sin 

6 
then z1z2  4cos 3  

6   i sin 3  
6 

 4cos 
2  i sin 

2 
 40  i  4i

z1
z2  1cos 3 −


6   i sin 3 −


6 

 cos 
6  i sin 

6

 3
2  1

2 i

Remark :
zn  rncosn  i sinn
if r  1 ,then
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cos  i sinn  cosn  i sinn

which is called DeMoivres formula.
We now show how DeMoivres formula can be used to obtain roots
of complex numbers we have

z 1
n  n r cos n  2k

n   i sin n  2k
n , k  0,1,2, . . . . . . . , r

Example (8):
Find all cube roots of −8 that is 3 −8

Solution :
z  −8 x  iy  −8 hence x  −8 ,y  0
r  64  8
tan   y

x  0
−8  0

  
so the polar form of −8 is
−8  8cos  i sin
then for n  3 if follows that
−8 1

3  3 8 cos 3  2k
3   i sin 3  2k

3 
for k  0,1,2,

Thus the cube roots of −8 are
for k  0  2cos 

3  i sin 
3   2 1

2  3
2 i  1  3 i

for k  1  2cos  i sin  2−1  −2
for k  2  2cos 5

3  i sin 5
3   2 1

2 −
3
2 i  1 − 3 i

Find the fourth root of (1) sol.:1, i,−1,−i

5.3.2:Complex Exponent:

Complex exponents are defind by

cos  i sin  ei

where e is an irrational real number given approximat by
e ≈ 2.71828. . . .
so z  rcos  i sin , can be written by

z  rei

5.3.3 Properties of Complex exponents:
if z1  r1ei1 z2  r2ei2 ,then
1) z1z2  r1r2ei12
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2) z1
z2  r1

r2 ei1−2

3) z  re−i

z  rcos − i sin
 rcos −   i sin − 
 re−i

4)If r  1 z  ei and ei  e−i

Example (9):
Find the complex exponent for Z  1  3 i ?

Solution :
r  1  3  2 , x  1  r cos  1  2cos  cos  1

2    
3

y  3  r sin  3  2sin  sin  3
2

1  3 i  2cos 
3  i sin 

3 
 2ei 3 .

5.4:Complex vector spaces:
In this section we will develop the basic properties of complex vector spaces.

In complex vector spaces avector w is called alinear combination of the vector
v1,v2, . . . . . . . , vr

w can be expresed in the form

w  k1v1  k2v2 . . . . . .krvr.

where k1,k2, . . . . , kr are complex numbers .
linear independence , spanning , basis ,dimensions and subspace carry over without

change to complex
vector spaces .
we sea that Rn is the most important vector spaces of n −tuples of real numbers
Cn is the most important vector space of n −tuples of complex numbers with addition

and scalar multiplication .
a vector u in Cn can be written in the horizontal as matrix form

u  u1,u2, . . . . . . , un or u 

u1

u2



un

where u1  a1  ib1 , u2  a2  ib2 , . . . , un  an  ibn.
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e1  1,0, . . , 0, e2  0,1, . . . . , 0, . . . , en  0,0, . . . . , 1.
form abasis called the standrad basis of Cn and since the are n −vectors is this basis Cn

is an n −dimensional
vector space.

If f1x and f2x are real-valued functions of the real variable x, then the expression

fx  f1x  if2x

is called a complex -valued function of the real variable x. some examples are:

fx  2x  ix3 and gx  2sinx  i cosx     (9.22)

Let V be the set of all complex-valued functions defined on the entire line .
If f  f1x  if2x and g  g1x  ig2x are two such functions and k is any

complex number,
then we define the sum function f  g and the scalar multiple kf by

f  gx  f1x  g1x  if2x  g2x
kf  kf1x  ikf2x

In words ,to form f  g add the real parts of f and g and add the imaginary parts .To
form kf multiply

the real and imaginary parts of f by k .for example, if f  fx and g  gx are the
functions in(9.22) ,then

f  gx  2x  2sinx  ix3  cosx
ifx  2xi  i2x3  −x3  2xi

it can be shown that V together with the stated operations is a complex vector space.

Definition (5.4.1):
If u  u1,u2, . . , un and v  v1,v2, . . , vn are vectors in Cn then their Euclidean

inner product u  v is defined by

u  v  u1v1  u2v2 . . . . . . . . . . . .unvn

where v1,v2, . . . . . . , vn are the conjugate of v1,v2, . . . . . . , vn

Example (10):
The Euclidean inner product of the vector

u  −i, 2, 1  3i and v  1 − i, 0, 1  3i
u  v  −i1  i  20  1  3i1 − 3i

 −i  1  1  9  11 − i.

140



Theorem (5.4.2):
If u,v, and w are vectors in Cn, and k is any complex number ,then

(a) u  v  v  u.
(b) u  v  w  u  w  v  w.
(c) ku  v  ku  v.
(d) v  v ≥ 0. further , v  v  0 if and only if v  0.

Proof :
(a) let u  u1,u2, . . . , un , v  v1,v2, . . . , vn ,then

u  v  u1v1  u2v2 . . . . . . . . . . . .unvn
and

v  u  v1u1  v2u2 . . . . . . .vnun.

so v  u  v1u1  v2u2 . . . . . . . . . . .vnun

 v1u1 v2u2 . . . . . . . . . . . . . .vnun

 v1u1  v2 u2 . . . . . . . . . . .vn un

 v1 u1 v2 u2 . . . . . . . . . . . . vnun

 u1v1  u2v2 . . . . . . . . . . . .unvn
 u  v.

(d) v  v  v1v1  v2 v2 . . . . . . . . . . . . .vn vn  |v1 |2 |v2 |2 . . . . . . . . . . .|vn |2 ≥ 0

equality holds iff |v1 |  |v2 | . . . . . . . . . . |vn |  0

and its true iff v1  v2 . . . . . . . . . . . . . . . vn  0 that if iff v  0.

Note that :

u  kv  ku  v

Definition (5.4.2):
The Euclidean norm or (Euclidean length of a vector ) u  u1,u2, . . . , un in Cn is

defined by

‖u‖  u  u 1
2  |u1 |2  |u2 |2 . . .|un |2 .

Definition (5.4.3):
The Euclidean distence betiween the points u  u1,u2, . . . , un and v  v1,v2, . . . , vn

is defined by
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du,v  ‖u − v‖  |u1 − v1 |2  |u2 − v2 |2 . . .|un − vn |2

Example (11):
If u  i, 1  i, 3 and v  1 − i, 2, 4i then find ‖u‖, dv,v ?

Solution :
‖u‖  |i|2  |1  i|2  |3|2  i−i  1  i1 − i  4

 1  2  9  12  2 3

du,v  |−1  2i|2  |−1  i|2  |3 − 4i|2

 −1  2i−1 − 2i  −1  i−1 − i  3 − 4i3  4i

 5  2  25  32  4 2 .

The vector space Cn with norm and inner product is called coplex Euclidean n-space.

Definition (5.4.4):
An inner product on a complex vector space V is a function that associates a complex

number 〈u,v
with each pair of vector u and v in V such that for all vectors u,v and w in Vand all

scalars k.
(i) 〈u,v  〈v,u
(ii) 〈u  v,w  〈u,w  〈v,w
(iii) 〈ku,v  k〈u,v
(iiii) 〈v,v ≥ 0 and 〈v,v  0 if and only if v  0
A complex vector space with an inner product is called a complex inner product space

or a unitary space .

some more properties:
(i) 〈0,v  〈v,0  0
(ii) 〈u,v  w  〈u,v  〈u,w
(iii)〈u,kv  k〈u,v

Proof :
〈u,kv  〈kv,u

 k〈v,u
 k〈v,u
 k〈u,v

Example (12):
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let U 
u1 u2

u3 u4
and V 

v1 v2

v3 v4

are any 2  2 matries with complex entrie
Now we define the complex inner product on complex M2,2
〈u,v  u1v1  u2v2 . . .unvn.

Example (13) :

If u 
0 i
1 1  i

and v 
1 −i
0 2i

〈u,v  01  i−i  10  1  i2i
 0  i2  0 − 2i  2
 1 − 2i

Example (14) :
The vectors u  i, 1 and v  1, i in C2 are orthogonal with respect to the Eulicdeant

inner prodcut

〈u,v  i1  1i  0

Example (15) :
Consider the veotor spaceC3 with the Euclidean inner prodcut , Apply Gram Schmidt

Process
to transform the basis u1  i, i, i , u2  0, i, i and u3  0,0, i in to an orthonormal

basis .

Solution :
v1  u1  i, i, i

v2  u2 − 〈u2,v1 

||v1||2
v1

 0, i, i − 2
3 i, i, i  

−2
3 i, 1

3 i, 1
3 i

v3  u3 − 〈u3,v1 

||v1||2
v1 − 〈u3,v2 

||v2||2
v2

 0,0, i − 1
3 i, i, i −

1
3
2
3
 −2

3 i, 1
3 i, 1

3 i
 0, −1

2 i, 1
2 i.

||v1|| 3 , ||v2|| 6
3 , ||v3|| 1

2
So , the orthonormal basis are:
w1  v1

||v1||2
  i

3
, i

3
, i

3


w2  v2

||v2||2
 

−2
3 i, 1

3 i, 1
3 i

6
3

   −2
6

i, 1
6

i, 1
6

i
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w3  v3

||v3||2


0, −i
2 , i

2 
1
2

 0, −i
2

, i
2
.

5.5: Unitary , Normal , and Hermitian Matrices
Definition 5.5.1 :

If A is a matrix with complex elements , then the coniugat transpose of A denoted by
A∗ , is defined by

A∗  At

Where A is the matrix whose elements are the complex conyugateo of the
corresponding entries in A and A

t
in the transpos of A.

Example (16):

Let A 
1  i −i 0

2 3 − 2i i
find A∗?

Solution :

A 
1 − i i 0

2 3  2i −i

A
t


1 − i 2
i 3  2i
0 −i

 A∗

Theorem 5.5.2 :
If A and B are matrices with complex entries and K is any complex number , then :
a) A∗∗  A.
b) A  B∗  A∗  B∗
c) KA∗  KA∗
d) AB∗  B∗A∗

Definition 5.5.3 :
A square matrix A with complex entries is called unitary matrix if

A−1  A∗

Theorem 5.5.4:
If A is an n  n matrix with complex enteries , then the following are equivelent:
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a) A is unitary.
b) The row vector of A form an orthonormal set in Cn with the Euclidean inner

prodcut.
c) The column vectors of A form an orthonormal set in Cn with the Euclidean inner

prodcut .

Example (17) :

The matrix A
1i
2

1i
2

1−i
2

−1i
2

has row vectors

r1  1  i
2 , 1  i

2 , r2  1 − i
2 , −1  i

2

Relative to the Euclidean inner product on Cn, we have :

||r1|| 1  i
2

2
 1  i

2
2
 1

2  1
2  1

||r2|| 1 − i
2

2
 −1  i

2
2
 1

2  1
2  1

And

r1. r2  1  i
2

1 − i
2  1  i

2
−1  i

2

 1  i
2

1  i
2  1  i

2
−1 − i

2  i − i  0

So, the row vectors from an orthonormal set in C2 . Thus , A is unitary and

A−1  A∗ 
1−i
2

1i
2

1−i
2

−1−i
2

AA∗  A∗A  I

AA−1  A−1A  I

Definition 5.5.5 :
A square matrix A with real entries is called orthogonally diagonollizable if there is a

unitary P
such that P−1AP  P∗AP is diagonal, the matrix P is said to be unitarily diagonal.

Definition 5.5.6 :
A square matrix A with complex entries is calld Hemition if
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A  A∗

Example (18) :
If

A 

1 i 1  i
−i −5 2 − i

1 − i 2  i 3

Then

A 

1 −i 1 − i
i −5 2  i

1  i 2 − i 3

So ,

A∗  At 

1 i 1  i
−i −5 2 − i

1 − i 2  i 3

Which means that A is Hermition .
In Hermition matrices , the entries on the main diagonal are real numbers .
and mirror image of each entry across the main diagonal is its complex conjugate .
Hermition matrices have some of the properties of real symmetric matrices
Hermition matrices are unitary digonalizable
There are unitarily diagonalizable mstrices that are not Hermition .

Definition 5.5.7 :
A square matrix A with complex entries is called normal if

AA∗  A∗A

Note that :
Every Hermition matrix A is normal since

AA∗  AA  A∗A

And every unitary matrix A is normal since

AA∗  I  A∗A

Theorem 5.5.8 :
If A is a square matrix with complex entries , then the following are equavalent :
a) A is unitary diagonalizable .

146



b) A has an orthonnrmal set of n eigenvectors .
c) A is normal .

Theorem 5.5.9 :
If A is a normal matrix , then eigenvectors from different eigenspace are orthogonal .
A normal matrix A is diagonalizable by any unitary matrix whose column vectors are

eigenvector of A by the following method .
1) Find a basis for each eigenspace of A .
2) Apply Gram – Schmidt proces to each of these basis to optain an orthonormal basis

for each eigenspace .
3) From the matrix P whose columns are the basis vector constructed in (2) .
This matrix unitarily diagonalizable A .

Example (18):

The matrix A 
2 1  i

1 − i 3
is unitorily diagonolizable because it is Hermition and therefore normal.
Find a matrix P that unitorily diagonalizes A

Solution :
The charactiristic polymonial of A is

det I − A 
 − 2 −1 − i
−1  i  − 3

  − 2 − 3 − 2  0

  − 1 − 4  0
The eigenvalues are   1 and   4
be definition

x 
x1

x2
is an eigenvector of A corresponding to  iff

x is a nontrivial solution of

 − 2 −1 − i
−1  i  − 3

x1

x2


0
0

to find the eigenvector corresponding to   1

−1 −1 − i
−1  i −2

x1

x2


0
0

x1  −1 − is , x2  s

x  s
−1 − i

1
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thus the eigenspace is one dimensional with basis

u 
−1 − i

1

G.S.P involves only normalizing the vector

‖u‖  |−1 − i|2  |1|2  3

P1  u
‖u‖ 

−1−i
3

1
3

P1 is an arthonormal basis for the eigenspace corresponding to   1
the eigenvector corresponding to   4

2 −1 − i
−1  i 1

x1

x2


0
0

x1   1i
2 s , x2  s

so the eigenvectors of A corresponding to   4 and

x  s
1i
2

1

the eigenspace is one dimentional with basis

u 
1i
2

1

Applying G.S.P.

‖u‖  1  i
2

2
 |1|2  3

2

P2  u
‖u‖ 

1i
6

2
6

P2 is an arthonormal basis for the eigenspace corresponding to   4

Thus
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P  P1P2  

−1−i
3

1i
6

1
3

2
6

P diagonalizes A and

P∗AP  P−1AP 
1 0
0 4

Theorem 5.5.1:
The eigenvalues of a Hermitian matrix and real numbers.

Proof :
If  is an eigenvalue and v a corresponding eigenvector of an n  n
Hermitian matrix A, then

Av  v
Multiplying both sides of this equation on the left by the conjugatc transpose of v yields

v∗Av  v∗v  v∗v     *
we will show that the x matrices v∗Av and v∗v both have real entries, so it
will follow from (*) that  must be a real number.

But v∗Av and v∗v are Hermitian, since
v∗Av∗  v∗A∗v∗∗  v∗v

and
v∗v∗  v∗v∗∗v  v∗v

Since Hermitian matrices have real entries on the main diagonal, and
and since v∗Av and v∗v are x , it follows that these matrices have real entries,

which complet the proof.

Corollary 5.5.11:
The eigenvalues of a symmetric matrix with real entries are real numbers.

Proof :
Let A be a symmetric matrix with real entries. Because the entries in A are real, it

follows that
A  A

But this implies that A is Hermitian, since
A∗  A ′  A′  A

Thus, A has real eigenvalues by Theorem 5.3.10
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PROBLEM SET XIII

(1) In each part find the principal argument of z.
(a) z  −i (b) z  1  i (c) z  −1  3 i

(2) In each part express the complex number in polar form using its principal argument.
(a) 5  5i (b) 6  6 3 i (c) −3 − 3i

(3) Express z1  i, z2  1 − 3i , and z3  3  i in polar form and use your results
to find

z1z2/z3. Check your result by performing the calculation without using polar
forms.

(4) In each part find all the roots.
(a) −i1/2 (b) −271/3 (c) −8  8 3i 1/4

(5) Find all solutions of the equation.
Z4/3  −4

(6) In each part find Rez and Imz.
(a) z  3ei (b) z  2 e1/2 (c) z  −3e−2i

(7) Let u  2i,0,−1,3, v  −i, i, 1  i,−1 , and w  1  i,−i,−1  2i,0.
Find
(a) iv  2w (b) 3 u − 1  iv (c) −iv  2iw

(8) Let u,v, and w be the vectors in Exercise 8. Find the vector x that satisfies
u − v  ix  2ix  w.

(9) Let u1  1 − i, i, 0 , u2  2i,1  i, 1 and u3  0,2i, 2 − i. Find
scalars c1 ,c2 , and c3 such that

c1u1  c2u2  c3u3  −3  i, 3  2i,3 − 4i

(10) Find the Euclidean norm of v if
(i) v  1  i, 3i, 1
(ii) v  2i,0,2i  1,−1

(11) Let u  3i,0,−i, v  0,3  4i,−2i, and w  1  i, 2i, 0. Find.
(i) ‖u‖  ‖v‖
(ii) ‖−iu‖  i ‖u‖

(12) Show that if v is a nonzero vector in Cn, then 1/‖v‖v has Euclidean norm 1.

(13) Find the Euclidean inner product u  v if
(i) u  −i, 3i, v  3i,2i
(ii) u  1 − i, 1  i, 2i, 3, v  4  6i,−5i,−1  i, i
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(14) Determine which sets are vector spaces under the given operations
For those that are not, list all axioms that fail to hold.
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(22) Determine the dimension of and a basis for the solution space of the
system.

(i)
2x1 − 1  ix2  0
−1  ix1  x2  0

(ii)
x1  ix2 − 2ix3  x4  0

ix1  3x2  4x3 − 2ix4  0

(23) Prove: If u and v are vectors in complex Euclidean n-space, then
u  kv  ku  v

(24) Establish the identity.
u.v  1

4 ‖u  v‖2 − 1
4 ‖u − v‖2  i

4 ‖u  iv‖2 − i
4 ‖u − iv‖2

for vectors in complex Euclidean n-space.
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Problem set XIV

(1) Let u  u1,u2 and v  v1,v2. Show that 〈u,v  3u1v1  2u2v2 defines an inner
product on C2.

(2) Compute 〈u,v using the inner product Exercise 1.
(i) u  2i,−i ,v  −i, 3i.
(ii) u  1  i, 1 − i , v  1 − i, 1  i .

(3) Let u  u1,u2 and v  v1,v2. Show that
〈u,v  u1v1  1  iu1v2  1 − iu2v1  3u2v2

defines an inner product on C2

. (4)Compute 〈u,v using the inner product in Exercise 3 .
(i) u  2i,−i, v  −i, 3i.
(ii) u  0,0, v  1 − i, 7 − 5i.

(iii) u  3i,−1  2i, v  3i,−1  2i

(5) Let u  u1,u2 and v  v1,v2. Determine which of the following are inner
products on C2.

for those that are not , list the axioms that do not hold .
(i) 〈u,v  u1v1 − u2v2.

(ii) 〈u,v  2u1v1  iu1v2  iu2v1  2u2v2 .

(6) Let u  u1,u2, u3 and v  v1,v2, v3. Dose 〈u,v  u1v1  u2v2  u3v3 − iu3v1
define an inner product on C3? If not ,list all axioms that fail to hold.
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Problem set XV

(1) In each part find A, ∗

(i) A 

2i 1 − i
4 3  i

5  i 0

(ii) A  7i 0 −3i

(2) Which of the following are Hermitian matrices ?

(i)
1 1  i

1 − i −3
(ii)

−2 1 − i 1  i
1  i 0 3
−1 − i 3 5

(3) Find k, ℓ, and m to make A a Hermitian matrix .

A 

−1 k −i
3 − 5i 0 m

1 2  4i 2

(4) Determine which of the following are unitary matrices .

(i)
i
2

1
2

−i
2

1
2

(ii)
1  i 1  i
1 − i −1  i

(iii)

−i
2

i
6

i
3

0 −i
6

i
3

i
2

i
6

i
3

(5) In each part verify that the matrix is unitary and find its inverse .

(i)
3
5

4
5 i

−4
5

3
5 i

(ii)
1
4  3  i 1

4 1 − i 3 
1
4 1  i 3  1

4 i − 3 

(6) Find a unitary matrix P that diagonalizes A , and determine P−1AP.

(i)
4 1 − i

1  i 5
(ii)

6 2  2i
2  2i 4
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(iii)

2 1
2

−i
2

−i
2

2 0

i
2

0 2

(7) Prove : If A is invertible , then so is A∗ in which case A∗−1  A−1∗

(8) Show that if A is unitary matrix, then A∗ is also unitary.
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