Exerciese (I)

1-Prove that if x and y ae both odd ,then $x^{2}+y^{2}$ is even but not divisible by 4 .

2-Prove that $5 \mid 8^{n}-3^{n}$ for all non-negative integeral values of n.
3-Show that $3^{2 n+1}+2^{n+2}$ is divisible by 7 for all non-negative integer n.

4-show that if a, b, c and d are integers with a and c non-zero such that $a \mid b$ and $c \mid d$ then $a c \mid b d$.

5-Show that if a, b and $c \neq 0$ are integers then $a|b \Leftrightarrow a c| b c$.

6-Show that if a and b are integrs such that $a \mid b$ then $a^{k} \mid b^{k}$ for every positive integer k.

7-Show that the product of two odd integers is odd ,while the product of two integers is even if either of the integer is even.

8-Prove that the square of any integer of the form $5 k+1$ is of the same form , $k \in \mathbf{Z}$.

9-Prove that if an integer is of the form $6 k+5$ then it is necessarily of the form $3 k-1$,but not conversely, $k \in \mathbf{Z}$.

Exerciese (II)

1-For $n \geq 1$, use induction to show that $3 \mid 2^{n}+(-1)^{n+1}$.

2-Given that $(a, 4)=2,(b, 4)=2$. Prove that $(a+b, 4)=4$.

3-If $a, b, c \in \mathbf{Z}$, then $(a+k b, b)=(a, b)$.

4-Find $(56,72)$ and express it as a linear combination of 56,72 .

5-Find $(5,15),(99,100),(-12,18)$.

6-Let a be a positive integer, what is the g.c.d. of $a, 2 a$?

7-Let a be a positive integer , what is the g.c.d. of a and $a+1$?

8-Use the Euclidean Algorithm to find the g.c.d. of $(666,1414)$.

9-Use the Euclidean Algorithm to obtain the integers $x, y^{\ni}(24,138)=24 x+138 y$.

10 -Find the g.c.d.of $(70,98,105),(6,10,15)$.

Exerciese (III)

1-Find [143, 227], [56, 27], [5040, 7700].

2-Find the general solution of the Diophantine equation $54 x+21 y=906$.

3-Find all positive solutions of $54 x+21 y=906$.

4-Find the general solution of the following Diophantine equation or show that there is no integral solution and find all positive solutions
(i) $17 x+13 y=100$.
(ii) $60 x+18 y=97$.
(iii) $1402 x+1969 y=1$.
(iv) $25 x+95 y=970$.
(v) $158 x-57 y=7$.

5-Prove that no integers x, y exist satisfying $x+y=60$ and $(x, y)=11$.

6-Prove that if a, b are positive integers satisfying $(a, b)=[a, b]$ then $a=b$.

7-Find positive integers a and b satisfying $(a, b)=10$, and $[a, b]=100$.

Exerciese (IV)

1-Find the prime factorization of the following:
39, 256, 5040, 9555, 4849845, 210733237.
2-Show that $\sqrt{2}+\sqrt{3}$ is irrational .
3-Using Fermat Factorization method factor each of the following:
143, 2279, 6077, 8051.
4-Find the three smallest even perfect numbers
5-Find a factor of each of the following integers:

$$
2^{15}-1, \quad 2^{1001}-1 .
$$

6-Use Theorem 2.4.5, to determinate whether each of the following Mersenne number is prime $\mathrm{M}_{17}, \mathrm{M}_{29}$.

7-It has been conjectured that there are infinitly many primes of the form $n^{2}-2$, find five such primes.

8-Prove that the only prime of the form $n^{3}-1$ is 7 .
9 -Prove that the only primeof the form $8^{n}+1 . n \geq 1$ is composite.
10 -Show that the sum of the twin primes $p, p+2$ is divisible by 12 , provided $p>3$.
11-If $n>3$ is prime show that $n+2 n+4$ can't both be primes.
12 -Given that p is a prime and $p \mid a^{n}$, prove that $p^{n} \mid a^{n}$.
13 -If $(b, c)=1$ and $b c$ is a perfect square,show that b, c are perfect square.

Exerciese (V)

1-If $a \equiv b(\bmod m)$, and $d \mid m$, prove that $a \equiv b(\bmod d)$.

2-If $a \equiv b(\bmod m)$ and $c>0, \quad$ prove that $c a \equiv c b(\bmod c m)$.

3 -Find the missing number x if $2 x 99561=\left[3(523+x)^{2}\right]$.

4-Solve if possible the following linear congruences :
(i) $18 x \equiv 60(\bmod 66)$.
(ii) $5 x \equiv 11(\bmod 29)$.
(iii) $4 x \equiv 7(\bmod 20)$.

5-Show that each of the following congruences holds
(i) $13 x \equiv 1(\bmod 2)$.
(i) $91 x \equiv 0(\bmod 13)$.
(i) $69 x \equiv 62(\bmod 7)$.

6-Determine whther each of the following pairs of integers are congruent modulo 7,
(a) 1,15
(b) $-9,5$
(c) 2,99 .

7-Show that if a is an even integer ,then $a^{2} \equiv 0(\bmod 4)$, and if a is an odd integer ,then
$a^{2} 1(\bmod 4)$.

8-Use the theory of congruence to verify that $97 \mid 2^{48}-1$.

9-Without performing the division ,determine whether the integers
176,521221 and $149,235,678$ are divisible by 9 or 11.
10-Show by mathematical induction that if n is a positive integer then $5^{n} \equiv 1+4 n(\bmod 16)$.

11-Find all solutions of each of the following linear congruences :
(a) $2 x \equiv 5(\bmod 7)$.
(b) $9 x \equiv 5(\bmod 25)$.
(c) $103 x \equiv 444(\bmod 999)$.
(a) $6 x \equiv 3(\bmod 9)$.

12-Find an inverse modulo 17 of each of the following integers: (i) 4 (ii) 7 .
13-Find all the solutions of the followig systems of linear congruences:
(a) $x \equiv 1(\bmod 2)$
(b) $x \equiv 5(\bmod 11)$
$x \equiv 2(\bmod 3)$
$x \equiv 14(\bmod 29)$
$x \equiv 3(\bmod 5)$
$x \equiv 15(\bmod 31)$

14-Determine which of the following integers are divisible by 3 , and which are divisible by 9 .
(a) 18381
(b) 987654321 .

15-Which of the following integers is divisible by $11 \& 7 \& 13$.
(a) 10763732
(b) 1086320015.

Exerciese (VI)

1-If $(a, 133)=1,(b, 133)=1$, show that $a^{18}-b^{18} \equiv 0(\bmod 133)$.

2 -Verify that $5^{38} \equiv 4(\bmod 11)$.

3-If $(n, 7)=1$, prove that $7 \mid n^{12}-1$.

4-If $(n, 13)=1,(a, 13)=1$ prove that $13 \mid n^{12}-a^{12}$.

5-If $(n, 91)=1,(a, 91)=1$ prove that $n^{12}-a^{12} \equiv 0(\bmod 91)$.

6-If $(a, 7)=1$, prove that $a^{6 k}-1 \equiv 0(\bmod 7)$ for any $k \in \mathbf{Z}$.
7-Using Wilson's Theorem,find the least positive residue of 8.9.10.11.12.13 modulo 7. 8- Using Fermat's Little theorem ,find the solutions of the following linear congruences
(a) $7 x \equiv 12(\bmod 17)$
(b) $7 x \equiv 12(\bmod 17)$.

9-Show that if p is an odd prime then $2(p-3)!\equiv-1(\bmod p)$.

Exerciese (VII)

1-Find the reduced residues system modulo each of the following integrs :
(a) 6
(b) 14
(c) 10 .

2-Use Euler's Theorem to find the least positive residues of $3^{100000}(\bmod 35)$.
3-Solve each of the following linear congruences using Euler’s Theorem :
(a) $5 x \equiv 3(\bmod 14)$
(b) $4 x \equiv 7(\bmod 15)$.

4-Find the remaider when
(a) (15)! is divisible by 17
(b) (26)! is divisible by 29 .

5- Calculate $\varphi(1001), \quad \varphi(5040), \quad \varphi(254)$.
6-Prove the following:
(i) If n and $n+2$ are twin primes, then $(n+2)=(n)+2$.
(ii) If p and $2 p+1$ are both odd primes, the $n=4 p$, satisfies

$$
\varphi(\mathrm{n}+2)=\varphi(\mathrm{n})+2
$$

7-Prove that if the integer n has r distinct odd primes factors then $2^{r} \mid \varphi(n)$.
8 -Prove that if $(\mathrm{a}, \mathrm{p})=1$, proved that $a^{p^{\alpha-1}(\alpha-1)} \equiv 1\left(\bmod p^{\alpha}\right), \forall \alpha \in \mathbf{Z}^{+}$.
9-Use Eulers Thoerem to prove that $a^{37} \equiv a(\bmod 1729)$.
10 -Show that $\varphi(5186)=\varphi(5187)=\varphi(5188)$.
11-Show that if n is a positive integer ,then

$$
\varphi(2 n)=\left\{\begin{array}{cc}
\varphi(n) & \text { if } n \text { is odd } \\
2 \varphi(n) & \text { if } n \text { is even }
\end{array}\right.
$$

Exerciese (VII)

1-Verify that (a) $\tau(n)=\tau(n+1)=\tau(n+2)=\tau(n+3)$,
holds for
(i) $n=3655$
(ii) $n=4503$.
(b) $\sigma(n)=\sigma(n+1)$,
holds for $\begin{array}{lll}\text { (i) } n=14 & \text { (ii) } n=206 & \text { (iii) } n=957\end{array}$
2-Find the sum of the positive integers divisors of each of the following integers :
(a) 35
(b) 196
(c) 10 !
(d) $2^{5} \cdot 3^{4} \cdot 5^{3} \cdot 7^{2} \cdot 11$.

3-Find the number of positive integers divisors of each of the following integers :
(a) 36
(b) 144
(c) 2.3.5.7.11.13.17.19.

4-Find the value of the Mobius function of each of the following integers :
(a) 100
(b) 105
(c) 2.3.5.7.11.13.

5-Prove that if $n>2$, then $\tau(n)<n$.
6-Prove that if a natural n has precisely three divisors ,the it is the square of prime.
7-Prove that $\sum_{d / n}(\tau(d))^{3}=\left(\sum_{d / n} \tau(d)\right)^{2}$.
8-Prove that $\sigma(n)=n+1 \Leftrightarrow n$ is a prime.
9 Show that 1000 ! terminates in 249 zeroes.
10 -Find the highest power of 5 dividing 1000 ! and the highest power of 7 dividing 2000!.

Exerciese (IX)

1-Show that 3 is a quadratic residue of 23 but a nonresidue of 19 .
2-Use Gauss lemma to evaluate each of the legendere symbols below :
(a) $\left[\frac{8}{15}\right]$
(b) $\left[\frac{5}{19}\right]$
(c) $\left[\frac{6}{31}\right]$.

3-Find all the quadratic residues of each of the following integers :
(i) 5
(ii) 13.

4-Evalute the legendre symbol $\left[\frac{7}{11}\right]$
(a) using Euler's criterion.
(b) using Gauss lemma.

5 -Find all solutions of the congruance $x^{2} \equiv 1(\bmod 15)$.

6-Evaluate each of the following legendre symbol
(a) $\left[\frac{7}{79}\right]$
(b) $\left[\frac{31}{641}\right.$
(c) $\left[\frac{111}{991}\right]$.

