Exerciese (I)

1-Prove that if x and y as both odd, then $x^2 + y^2$ is even but not divisible by 4.

2-Prove that $5 | 8^n - 3^n$ for all non-negative integeral values of *n*. 3-Show that $3^{2n+1} + 2^{n+2}$ is divisible by 7 for all non-negative integer *n*.

4-show that if a, b, c and d are integers with a and c non-zero such that $a \mid b$ and $c \mid d$ then $ac \mid bd$.

5-Show that if a, b and $c \neq 0$ are integers then $a \mid b \Leftrightarrow ac \mid bc$.

6-Show that if a and b are integers such that $a \mid b$ then $a^k \mid b^k$ for every positive integer k.

7-Show that the product of two odd integers is odd ,while the product of two integers is even if either of the integer is even.

8-Prove that the square of any integer of the form 5k+1 is of the same form, $k \in \mathbb{Z}$.

9-Prove that if an integer is of the form 6k+5 then it is necessarily of the form 3k-1, but not conversely, $k \in \mathbb{Z}$.

Exerciese (II)

1-For $n \ge 1$, use induction to show that $3 \mid 2^n + (-1)^{n+1}$.

2-Given that (a, 4) = 2, (b, 4) = 2. Prove that (a + b, 4) = 4.

3-If $a, b, c \in \mathbb{Z}$, then (a + kb, b) = (a, b).

4-Find (56,72) and express it as a linear combination of 56,72.

5-Find (5,15), (99,100), (-12,18).

6-Let *a* be a positive integer , what is the *g*. *c*. *d*. of *a*, 2*a*?

7-Let *a* be a positive integer , what is the *g*. *c*. *d*. of *a* and a + 1?

8-Use the Euclidean Algorithm to find the g.c.d. of (666, 1414).

9-Use the Euclidean Algorithm to obtain the integers $x, y \neq (24, 138) = 24x + 138y$.

10-Find the g.c.d.of (70,98,105), (6,10,15).

Exerciese (III)

1-Find [143,227], [56,27], [5040,7700].

2-Find the general solution of the Diophantine equation 54x + 21y = 906.

3-Find all positive solutions of 54x + 21y = 906.

4-Find the general solution of the following Diophantine equation or show that there is no integral solution and find all positive solutions

(i) 17x + 13y = 100. (ii) 60x + 18y = 97. (iii) 1402x + 1969y = 1. (iv) 25x + 95y = 970. (v) 158x - 57y = 7.

5-Prove that no integers x, y exist satisfying x + y = 60 and (x, y) = 11.

6-Prove that if a, b are positive integers satisfying (a, b) = [a, b] then a = b.

7-Find positive integers a and b satisfying (a, b) = 10, and [a, b] = 100.

Exerciese (IV)

1-Find the prime factorization of the following:

39, 256, 5040, 9555, 4849845, 210733237.

2-Show that $\sqrt{2} + \sqrt{3}$ is irrational.

3-Using Fermat Factorization method factor each of the following:

143, 2279, 6077, 8051.

4-Find the three smallest even perfect numbers

5-Find a factor of each of the following integers:

 $2^{15} - 1$, $2^{1001} - 1$.

6-Use Theorem 2.4.5, to determinate whether each of the following Mersenne number is prime M_{17}, M_{29} .

7-It has been conjectured that there are infinitly many primes of the form $n^2 - 2$, find five such primes.

8-Prove that the only prime of the form $n^3 - 1$ is 7.

9-Prove that the only prime of the form $8^n + 1$. $n \ge 1$ is composite.

10-Show that the sum of the twin primes p, p+2 is divisible by 12, provided p > 3.

11-If n > 3 is prime show that n + 2n + 4 can't both be primes.

12-Given that p is a prime and $p \mid a^n$, prove that $p^n \mid a^n$.

13-If (b, c) = 1 and bc is a perfect square, show that b, c are perfect square.

Exerciese (V)

1-If $a \equiv b \pmod{m}$, and $d \mid m$, prove that $a \equiv b \pmod{d}$.

2-If $a \equiv b \pmod{m}$ and c > 0, prove that $ca \equiv cb \pmod{cm}$.

3-Find the missing number x if $2x99561 = [3(523 + x)^2]$.

4-Solve if possible the following linear congruences :

(i) $18x \equiv 60 \pmod{66}$. (ii) $5x \equiv 11 \pmod{29}$. (iii) $4x \equiv 7 \pmod{20}$.

5-Show that each of the following congruences holds

(i) $13x \equiv 1 \pmod{2}$. (i) $91x \equiv 0 \pmod{13}$. (i) $69x \equiv 62 \pmod{7}$.

6-Determine whther each of the following pairs of integers are congruent modulo 7,

(a) 1,15 (b) -9,5 (c) 2,99.

7-Show that if a is an even integer ,then $a^2 \equiv 0 \pmod{4}$, and if a is an odd integer ,then

 $a^2 1 \pmod{4}$.

8-Use the theory of congruence to verify that $97 \mid 2^{48} - 1$.

9-Without performing the division ,determine whether the integers 176, 521221 and 149,235,678 are divisible by 9 or 11.

10-Show by mathematical induction that if *n* is a positive integer then $5^n \equiv 1 + 4n \pmod{16}$.

11-Find all solutions of each of the following linear congruences :

(a) $2x \equiv 5 \pmod{7}$.

(b) $9x \equiv 5 \pmod{25}$.

(c) $103x \equiv 444 \pmod{999}$.

(a) $6x \equiv 3 \pmod{9}$.

12-Find an inverse modulo 17 of each of the following integers: (i) 4 (ii) 7.

13-Find all the solutions of the followig systems of linear congruences:

- (a) $x \equiv 1 \pmod{2}$ (b) $x \equiv 5 \pmod{11}$ $x \equiv 2 \pmod{3}$ (c) $x \equiv 5 \pmod{11}$ $x \equiv 14 \pmod{29}$
 - $x \equiv 3 \pmod{5} \qquad \qquad x \equiv 15 \pmod{31}$

14-Determine which of the following integers are divisible by 3, and which are divisible by 9.

(a) 18381 (b) 987654321.

15-Which of the following integers is divisible by 11 & 7 & 13.

(a) 10763732 (b) 1086320015.

Exerciese (VI)

1-If (a, 133) = 1, (b, 133) = 1, show that $a^{18} - b^{18} \equiv 0 \pmod{133}$.

2-Verify that $5^{38} \equiv 4 \pmod{11}$.

:

3-If (n,7) = 1, prove that $7 \mid n^{12} - 1$.

4-If (n, 13) = 1, (a, 13) = 1 prove that $13 \mid n^{12} - a^{12}$.

5-If (n,91) = 1, (a,91) = 1 prove that $n^{12} - a^{12} \equiv 0 \pmod{91}$.

6-If (a,7) = 1, prove that $a^{6k} - 1 \equiv 0 \pmod{7}$ for any $k \in \mathbb{Z}$. 7-Using Wilson's Theorem, find the least positive residue of 8.9.10.11.12.13 modulo 7. 8- Using Fermat's Little theorem, find the solutions of the following linear congruences

(a) $7x \equiv 12 \pmod{17}$ (b) $7x \equiv 12 \pmod{17}$.

9-Show that if p is an odd prime then $2(p-3)! \equiv -1 \pmod{p}$.

Exerciese (VII)

1-Find the reduced residues system modulo each of the following integrs : (a) 6 (b) 14 (c) 10. 2-Use Euler's Theorem to find the least positive residues of $3^{100000} \pmod{35}$. 3-Solve each of the following linear congruences using Euler's Theorem : (a) $5x \equiv 3 \pmod{14}$ (b) $4x \equiv 7 \pmod{15}$.

4-Find the remaider when

- (a) (15)! is divisible by 17 (b) (26)! is divisible by 29.
- 5- Calculate $\varphi(1001)$, $\varphi(5040)$, $\varphi(254)$.

6-Prove the following:

(i) If n and n+2 are twin primes, then (n+2) = (n)+2.

(ii) If p and 2p+1 are both odd primes, the n = 4p, satisfies $\varphi(n+2) = \varphi(n) + 2$.

7-Prove that if the integer *n* has *r* distinct odd primes factors then $2^r | \varphi(n)$. 8-Prove that if (a,p) = 1, proved that $a^{p^{\alpha-1}(\alpha-1)} \equiv 1 \pmod{p^{\alpha}}, \forall \alpha \in \mathbb{Z}^+$. 9-Use Eulers Theorem to prove that $a^{37} \equiv a \pmod{1729}$. 10-Show that $\varphi(5186) = \varphi(5187) = \varphi(5188)$. 11-Show that if *n* is a positive integer ,then

 $\varphi(2n) = \begin{cases} \varphi(n) & \text{if } n \text{ is odd} \\ 2\varphi(n) & \text{if } n \text{ is even} \end{cases}$

Exerciese (VII)

1-Verify that (a) $\tau(n) = \tau(n+1) = \tau(n+2) = \tau(n+3)$, (i) *n* = 3655 holds for (ii) n = 4503. (b) $\sigma(n) = \sigma(n+1)$, (i) n = 14 (ii) n = 206holds for (iii) n = 957. 2-Find the sum of the positive integers divisors of each of the following integers : (d) $2^5 \cdot 3^4 \cdot 5^3 \cdot 7^2 \cdot 11$. (a) 35 (b) 196 (c) 10! 3-Find the number of positive integers divisors of each of the following integers : (a) 36 (b) 144 (c) 2.3.5.7.11.13.17.19. 4-Find the value of the Mobius function of each of the following integers : (c) 2.3.5.7.11.13. (a)100 (b) 105 5-Prove that if n > 2, then $\tau(n) < n$. 6-Prove that if a natural *n* has precisely three divisors ,the it is the square of prime. 7-Prove that $\sum_{d|n} (\tau(d))^3 = (\sum_{d|n} \tau(d))^2$. 8-Prove that $\sigma(n) = n + 1 \Leftrightarrow n$ is a prime. 9Show that 1000! terminates in 249 zeroes. 10-Find the highest power of 5 dividing 1000! and the highest power of 7 dividing

2000!.

Exerciese (IX)

1-Show that 3 is a quadratic residue of 23 but a nonresidue of 19.2-Use Gauss lemma to evaluate each of the legendere symbols below :

(a) $\left[\frac{8}{15}\right]$ (b) $\left[\frac{5}{19}\right]$ (c) $\left[\frac{6}{31}\right]$.

3-Find all the quadratic residues of each of the following integers : (i) 5 (ii) 13.

4-Evalute the legendre symbol $\left[\frac{7}{11}\right]$

(a) using Euler's criterion.

(b) using Gauss lemma.

5-Find all solutions of the congruance $x^2 \equiv 1 \pmod{15}$.

6-Evaluate each of the following legendre symbol

