
Chapter 1
1.1 Divisibiliy

By Natural numbers we mean the numbers 1, 2, 3 . Integers are Natural
numbers, 0 and the negative numbers ...-3,-2,-1, the set of Integers will be denoted by Z

such that Z  {,-3,-2,-1, 0, 1, 2, 3}.
Definition 1.1.1

If a and b are Integers with a ≠ 0, we say that a divides b if there is an integer

c such that bac.
If a divides b, then a is a divisor or factor of b.
If a divides b we write a∣b , if a doesn’t divide b then a ∤ b.
Example (1):

The following illustrate the concept of divisibility of integers:
13∣182, -5∣30, 6 ∤ 44, 7 ∤ 50 and 17∣0.

Example (2):
The divisors of 6 are 1, 2, 3, 6.
The divisors of 17 are 1, 17.
The divisors of 100 are 1, 2, 4, 5, 10, 20, 25, 50 and 100.

Note that:
Every non-zero Integer is a divisor of 0 and 1 is a divisor of every Integer or

equivalently every Integer is a multiple of 1.
Theorem 1.1.2

If a,b and c are integers with a∣b and b∣c then a∣c.
Proof :

Since a∣b so b  k1a , and b∣c so ck2b ,where k1,k2 are
integers ,i.e. k1, k2 ∈ Z.
Hence c  (k2 k1) a  k3a, where k3 k1.k2 ∈ Z. So a∣c.
Thus the relation of divisibility is transitive.
Example (3):

Since 11∣66 and 66∣198 ∴ 11∣198.
Note:
The relation of divisibility of integer is not an equivalence
relation,since it is reflexive and transitive but not symmetric.

Theorem 1.1.3
If a,b,x and y are integers and if d∣a and d∣b then d∣(axby).

Proof :
Since d∣a  a  k1d and d∣b  b  k2d, where k1 , k2 Z.
∴ ax  by  k1dx  k2dy

 d ( k1x  k2y )
 d ∣ ( ax  by ).
Example (4):

Since 3∣21 and 3∣33,∴ 3 divides 5. 21 - 3(33) 105 - 996.
Corollary (1)

Taking xy1 we see that d∣ab.
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Corollary (2)
Taking x1 , y-1 we see that d∣a-b.

Thus the divisor of each of two integers is a divisor of their sum
and their difference.
Example (5):

Show that a-b∣an-bn for all non-negative integral values of n.
Solution :

It is proved by induction.
 it is true for n  0 i.e., a-b∣a0-b0 i.e., a-b∣0.
 assume that it is true for n  k then a-b ∣ ak - bk. . . . . ∗
we will prove it is true nk1.
ak1 - bk1  ak1 - akb  akb - bk1

 ak (a-b)  b (ak - bk )
Since a-b ∣ ak ( a-b ), and ( a-b ) ∣ b ( ak - bk ) by ∗ then Theorem 1.1.3 implies that
a-b ∣ ak ( a - b )  b ( ak - bk ) i.e. a-b∣ak1 - bk1,
and so it is true for nk1. So the induction is complete and
a-b∣ an - bn for all non-negative integral values of n.

Theorem 1.1.4
The division Algorithm or Theorem of Euclid.

If a and b are integers such that b0 , then there are unique
integers q and r such that abqr with 0≤ r  b . The integers
q and r are called respectively , the quotient and remainder in
the division of a by b.

Proof :
We have two cases :
(I) If a is a multiple of b .
(II) If a is not a multiple of b.
In case (I): a  bq , q ∈Z, the reminder being zero in this case.
In case (II): a  bq  r , 0  r  b.
For if r  b , then

a  bq  b
 ( q  1 ) b
 q∖ b , q∖  q  1,

which contradict the fact that a is not a multiple of b .Combing the two cases , we get
a  bq  r , 0 ≤ r  b.

Now we prove the uniqueness of q and r. Suppose that a has two representations of the
desired form , namely

a  bq  r , 0 ≤ r  b and a  bq\  r\ , 0 ≤ r\ b.
∴ a-a  0  b ( q-q\ )  ( r-r\ ).

The L.H.S. of the above equation is divisible by b and the first term on the R.H.S. is
also divisible by b.

Hence b∣| r-r\| , but rb and r\b and so | r-r\|b .
Hence b∣ r-r\| only if | r-r\|0  r-r\ 0  rr\. Consequently qq\ .
Example (6):

let b  15 then
177  15 . 11  12 0  12  15
-54  15 . ( -4 )  6 0  6  15
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105  15 ( 7 )  0 0  0  15.
Note:
We can use the greatest integer function to give explicit formula for the quotient and

reminder in the division algorithm.
Since q is the largest integer such that bq ≤ a, and r  a - bq it follows that:
q[a/b] , r  a-b [ a/b ].
Example (7):

let a  1028 and b  34 , then a  bq  r , 0 ≤ r  b,
where q  [ 1028/34 ]  30,

r  1028-34 (30)  8.
Example (8):

let a  -380 , b  75 , then a  bq  r, 0 ≤ r  b,
where q [ -380 / 75 ]  -6,

r  -380 - 75 ( -6 )  70.
Definition 1.1.5

If b  2 we get a  2q  r , 0 ≤ r  2 , thus r  0 , 1.
Thus every integer is either of the form 2q or 2q  1.
Integers of the form 2q are called even.
Integers of the form 2q  1 are called odd.
Example (9):

The square of any integer a leaves the reminder 0 or 1 when divided by 4.
Solution :

a  2q or a  2q  1
∴a2  4q2 or a2  4q2  4q  1,

and so leaves the reminder 0 or 1 when divided by 4.
Example (10):

Show that if n is an odd integer then 8 ∣ n2-1
Solution :

Let n  2q1 , then n2  4q2  4q  1
∴n2-1  4q ( q  1 ).

Now either q or q1 is even , so q ( q  1 ) is even so q(q1) 2k , k∈Z.
∴n2-1  8k  8∣n2-1.
Example(11):

Use division algorithm to prove that the cube of any integer is either of the
form qn , qn1 or qn8.
Solution :

By division algorithm every integer is either of the form 3k , 3k1 , or 3k2 ( taking
b3 in division algorithm).

Now
(3k)3  27k3  9 (3k3)  9n.

(3k1)3  27k3  9k (3k1)  1
 9 [3k3  k(3k  1) ]  1
 9n1.

(3k2)3  27k3  18k (3k  2)  8
 9 [3k3  2k (3k  2) ]  8
 9n  8.

Example (12):
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Prove that if n is an odd positive integer then ab ∣ anbn .
Solution :

It is true for n1 as ab ∣ ab.
Suppose it is true for n  k, so that ab ∣ ak  bk ........(*).
Now ak2  bk2  ak2 - ak b2 ak b2  ak b2  bk2

 ak (a2-b2)  b2(ak  bk ).
Now a  b∣ak (a2-b2) and ab ∣ b2(ak  bk) (from *)
∴ ab∣ak (a2-b2)  b2(ak  bk)
i.e., ab ∣ak2  bk2.

So it is true for n k2 and hence by induction its true for all odd positive integral value
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1.2 The Greatest Common Divisor

Definition 1.2.1
The greatest common divisor of two integers a and b , that are not both zero , is

the largest integer that divides
both a and b.
The greatest common divisor of a,b is written as (a,b),so (0,0)0 . It is denoted by d and

it satisfies the following:
(i) d0, (ii) d∣a , d∣b, (iii) if c is any integer such that c∣a , c∣b

then c∣d ,
i.e. any common divisor of a,b is also a divisor of d.
Example (1):

The common divisors of 24 and 84 are
1 , 2 , 4 , 6 , 12, hence (24 , 84)12.
( 15 , 81)3, (17 , 25)1, (0 , 44)44, (-6 , -15)3.

Definition 1.2.2:
The integers a and b are called relatively prime if a and b have greatest

common divisor (a , b)1.
Example(2):

Since (25 , 42)1 so 25 , 42 are relatively prime.
Note:
Since the divisors of -a are the same divisors of a , it follows that
(a , b)(|a|,|b|) where |a| denotes the absolute value of a.

Theorem 1.2.3
The gcd of two integers a and b is unique .

Suppose d (a , b) , c (a, ,b) , we must prove that cd.
Since d is gcd (a , b) , c is a common divisor ( gcd is also a common divisor of a , b)

∴c∣d likewise , d∣c.
Hence d  c . Since both c , d are positive therefore c  d .

Theorem 1.2.4
Let a , b and c be integers with (a , b)d then
(i) (a/d , b/d)  1
(ii) (acb , b)  (a , b)

Proof :
(i) Let (a , b)  d such that a , b∈ Z. We show that a/d , b/d have no common positive

divisors other than 1 .
let k be a ve integer such that k∣(a/d) and k∣(b/d) then there are k1 and k2 such that

a/d  k1k and b/d k2k.
So a  d k1k , b  dk2k.
Hence dk is a common divisor of a and b.
Since d is gcd of a,b and dk ≤ d so that k must equal 1 so (a / d , b / d)1.
(ii) let d  (a,b) and d1(a  cb , b), so d∣a , d∣b , by Theorem (1.1.3)
∴d∣a  cb , d∣b , c∈ Z, so d∣d1 ..........(1).
d1 ∣ acb , d1 ∣b by Theorem (1.1.3)
∴d1 ∣a cb - cb  d1 ∣a , d1 ∣b, so d1 ∣d .........(2),
from (1),(2) d  d1 and (a , b)  (a  cb , b).
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Theorem 1.2.5
If a  bqr then (a , b)  (b , r).

Proof :
Let (a , b)  d

so d∣a , d∣b, by Theorem 1.1.3 d ∣ a-bq , q∈ Z
∴d∣r , d∣b,
∴d is a common divisor of r,b .
If ( b , r)  d1
∴d∣d1. . . . . . . . . . . . . . . . . 1.
Since d1 ∣ b , d1 ∣ r by Theorem 1.1.3 d1 ∣ bqr  d1 ∣ a , d1 ∣ b
∴d1 is a common divisor of a,b.
∴d1 ∣d ..................(2)
from (1) and ( 2) d1  d ∴(a , b)  (b , r).

Theorem 1.2.6
Let d  (a , b) then there exist integers x0 , y0 such that d  ax0  by0 .

Proof :
Consider the linear combination ax  by , where x , y range over all integers .This set

of integers {ax  by}
includes positiveve and -ve values also 0 by the choice x  y  0 . Choosing x0 and y0

so that ax0  by0 is
the least positive integer l in the set.
Thus l  ax0  by0. We prove that l∣ a , l∣ b.
Assume that l∤ a and we obtain a contradiction.From l∤ a ∃ integers q and r , such that

a  l qr with 0  r  l,
so r  a - l q

 a - q (ax0  by0)
 a (1 - q x0)  b (- q y0),

and thus r is in the set { ax  by } . This contradicts the fact that l is the least positive
integer in the

set { ax  by } .
Thus our assumption that l∤ a is false and so l∣a .Similarly we can show that l∣b .
Now since d is the gcd of a and b a  dA , b  dB where A,B∈ Z.Since
l  ax0  by0
 dAx0  dBy0
 d (Ax0  By0 )  d∣l  d ≤ l.
Now d  l is impossible since d is the gcd and so d  l  ax0  by0.

Corollary (1):
If (a , b)1 then there exist integers x and y such that ax  by  1.

Theorem 1.2.7:
If a∣bc with (a , b)1 , then a∣c.

Proof :
(a , b)  1  axby 1 , for x , y∈ Z.
∴ acx  bcy c.
Now a∣acx , a∣bcy,
∴a∣acx  bcy i.e., a∣c(axby) i.e., a∣c (∵ (axby)1) .

Definition 1.2.8
Let a1 , a2,... , an be integers not all zeros. The gcd of these integers is the
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largest integer
which is a divisor of all the integers in the set .
The gcd of a1 , a2,... , an is denoted by (a1 , a2,... , an).
Example (3):

( 12 , 18 , 30)6, (10 , 15 , 25)5.
Lemma 1.2.9

If a1, a2,... ,an are integers not all zeros , then
(a1, a2,... ,an)  ( a1, a2,... ,an−1 , (an−1, an )).

Example(4):
To find gcd of 105 , 140 and 350 by lemma 1.2.9

( 105 , 140 , 350)  ( 105 , (140 , 350))
 (105 , 70) 35.

Example (5):
(15 , 21 , 35 )  ( 15 , (21 , 35) )  (15 , 7)  1

1.3 The Euclidean Algorithm

The gcd of two integers can be found by listing all ve divisors and picking out the
largest one common to

each , but this is not suitable for large numbers.
A more efficient process involving repeated application of the division algorithm goes

by the name of
Euclidean Algorithm . The E.A. may be described as follows :

Let a , b be two integers whose gcd is desired , we can find unique integers q1 , r1 such
that

a  bq1  r1 0 ≤ r1  b
if r1 ≠ 0 we divide b by r1 so

b  r1 q2  r2 0 ≤ r2  r1.
if r2 ≠ 0 we divide r1 by r2 so

r1  r2 q3  r3 0 ≤ r3  r2.
Similarly if r3 ≠0
r2  r3 q4  r4 0 ≤ r4  r3
.
.
.
rk−2  rk−1 qk  rk 0  rk  rk−1
rk−1  rk qk1  0 rk1  0.
By the repeated application of Theorem 1.2.5 , we can show that rk , the last non-zero
reminder which appears in this manner is equal to (a , b),
i.e.,(a , b)  (b , r1)  (r1 , r2) - - - - (rk−1 , rk)  (rk , 0)  rk.
Example (1):

Find (243 , 129).
243  129.1  114
129  114.1  15
114  15.7  9
15  9.1  6
9  6.1  3
6  3.2  0
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∴(243 , 129)  3 .
Example (2):

Find (275 , 105) and express it as a linear combination of 275 and 105 .
Solution :

275  105.2  65
105  65.1  40
65  40.1  25
40  25.1  15
25  15.1  10
15  10.1  5
10  5.1  0

∴(275 , 105)  5.
To express 5 as L.C. of 275 , 105 we have to begin from the second equation from the

bottom
5  15 - 10
 15 - (25 - 15)
 2(15) - 25
 2(40 - 25) - 25
 2(40) - 3(25)
 2(40) - 3(65 - 40)
 5(40) - 3(65)
 5(105 - 65) - 3(65)
 5(105) - 8(65)
 5(105) - 8(275 - 2.105)
 (105) (21)  (275) (-8)

∴ 5  275 x  105 y where x  -8, y21 .
Note:

The integers x and y are not unique i.e., for example 5 can be written as a L.C.
of 275 and 105 for different values of x and y than those listed above.
For example: one could add and subtract (275) (105) to get

5  (275)(-8)  (105)(21)  (275)(105) - (275)(105)
 275 (-8  105)  105 (21 - 275)
 275 (97)  105 (-254) .

Ex (3):
Apply the Euclidean Algorithm to find (34 , 55)

55  34.1  21
34  21.1  13
21  13.1  8
13  8.1  5
8  5.1  3
5  3.1  2
3  2.1  1
2  1.2 0

∴ (34 , 55)  1.
Example (4):

Prove that for any integer a,one of the integers a , a2 , a4 is divisible by
3 .
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Solution :
Every integer a is either of the form 3k or 3k1 or 3k2.

If a is of the form 3k then 3∣a.
If a  3k1 then a2  3k3  3∣a2.
If a  3k2 then a4  3k6  3∣a4
Example (5):

Show that if a is an integer such that 2∤a and 3∤a , then 24∣a2-1.
Solution :

a must be of the form 6k1 or 6k5.
If a  6k1 then a2 -1  36k2  12k

 12k (3k  1).
Now either k or 3k1 is even so k (3k  1)2n
Hence a2 -124n  24∣a2 -1.
If a  6k5 then a2 -1  36k2  60k  24

 12k (3k  5)  24.
Now either k or 3k5 is even and so k (3k  5)2n.
Hence a2 -124n2424(n1)  24∣a2-1.

1.3.1 Fibonacci Numbers:
The integers 1,2,3,5,8,13,.. in which each integer after the second is the sum of two

preceding integers are
called Fibonacci Numbers.
Ex (6):

Prove that two consecutive Fibonacci numbers are relatively prime.
Solution :

The first two consecutive F.N. are 1 , 2 and (1 , 2)1 . Let k1 , k2 be two
consecutive F.N. which are

relatively prime i.e. (k1 , k2)  1.
we must prove that (k2 , k3)  1 , where k3  k1k2.
Let (k2 , k3)  d i.e., (k2 , k1k2)  d.
 d∣k2 , d∣ k1k2. ∴d∣ k1k2-k2 i.e., d∣ k1.
Thus d∣ k2 , d∣k1 , but (k1 , k2)  1 by hypothesis .
Therefore d∣1  d1, which completes the proof.
Example (7):

Prove that if a∣c , b∣c with (a , b)  1 , then ab∣c.
Solution :

a∣c  c  ap, p ∈ Z.
b∣c  c  bq, q ∈ Z.

∵ (a , b)  1 so ∃ x , y ∈ Z, such that ax  by  1.
∴ acx bcy  c,  a(bq)x  b(ap)y  c

i.e. ab (qx  py)  c  ab∣c .
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1.4 The Least Common Multiple

Definition 1.4.1:
Let a , b be two non-zero integers . An integer c is said to be Common Multiple

of a
and b if a∣c and b∣c.

Definition 1.4.2:
Let a , b be non-zero integers . Then an integer m is called the least common

multiple of a and b
denoted by [a , b] or Lcm(a , b) if it has the following properties:
(1) m  0,
(2) a∣m , b∣m,
(3) if c∈ Z is any common multiple of a , b then m∣c.
Example(1):

Find the ve common multiple of [-12 , 30]
-12 , 30  60 , 120 , 180 , ..
hence [-12 , 30]  60

Theorem 1.4.3:
For any positive integers a , b we find (a , b)[a , b]  a b.

Proof :
Let d  (a , b) so that a  dr and b  ds for r,s ∈ Z .

Let m 
ab
d

. we verify that m satisfy the three conditions of l.c.m.

The first condition obviously satisfied as a  0 , b  0 , d  0 so m  0 .

Secondly m 
ab
d

 m  as  rb so a∣m , b∣m .

To see the condition (3) let c be any positive integer such that a∣c , b∣c so,
c  au  bv for some u , v Z .
Since d  (a , b) , so ∃ integers x , y such that d  ax  by consequently ,
c
m


c
ab
d


cd
ab


c(axby)

ab
 

c
b
x c

a
yvxuy.

∴m∣c, so m satisfies the third condition for l.c.m.

Thus m  [a , b] i.e. [a , b] ab
d


ab

(a,b)
. Hence (a , b) [a , b]  ab.

Example (2):
Find [a , b] if a  275 , b  105.

Solution :
From example before (275 , 105)  5. By the above theorem
(275 , 105) [275 , 105]  (275)(105)

5 [275 , 105]  (275 )( 105)

[275 , 105] (275)(105)
5

[275 , 105]  5775.
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Example (3):
Proof that the gcd of two positive integers always divides their lcm.

Solution :
Let a , b ∈ Z such that (a , b)  d, so a  a1d and b  b1d.By Theorem1.4.3
(a , b) [a , b]  ab

d [a , b]  a1b1d2 ( d)
[a , b]  a1b1d

so d∣[a , b]
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1.5 The Linear Diophantine Equations

Consider the following problem . A man wishes to purchase $510 of travelers checks .
The checks are

available only in $20 and $50 . How many of each denomination should he buy ? if we
let x denotes the

number $20 checks and y the number of $50 checks , then the equation is
20x  50y  510 must be satisfied . To solve this problem we need to find all solutions

of this equation ,
where x , y are non-negative integers .
From here we have a diophantine equation . Diophantine eqs. get their name from the

ancient
Greek mathematician diophantus .

Definition 1.5.1:
An equation of the form ax  by  c,

where a , b , c Z and a , b are not both zero is called a Linear Diophantine equation in
two

variables (unknowns) (if it is solved in integers) .
A solution of this equation is a pair of integers x0 , y0 which when substituted into the

equation satisfies it .
A given Linear Diophantine equation may have a number of solutions for ex: the

equation
3x  6y  18 has infinitely many solutions like:
3.4  6.1  18
3(-6)  6.6  18
3(10)  6(-2)  18.
where as the equation 2x  10y  17 which has no solution .
so its reasonable to ask about the conditions under which a solution is possible . The

answer
is given by the following theorem .

Theorem 1.5.2:
Let a , b be integers with d  (a , b) . The equation ax  by  c has no integral solution if

d ∣c.
If d∣c then there are infinitely many integral solutions . Moreover , if x  x0 , y  y0
is a particular solution of the equation , then all solutions are given by
x  x0  (b/d)n , y  y0 - (a/d)n, where n is an integer .

Proof :
Assume that x and y are integers such that ax by  c . Then since d∣a and d∣b so d∣c .
Hence if d∤c , there are no integral solutions of the equation.
Assume that d\c. Since (a,b)d ∃ s,t Z, such that d  as  bt .......(*)
Since d∣c there is e ∈ Z such that de  c.
Multiply both sides of (*) by e we get
c  de  (as  bt) e  a(se)  b(te).
Hence one solution of the eq. is given by xx0 and yy0 where x0se, y0te.
Now show that there are infinitely many solutions.
Let xx0  (b/d)n and yy0 - (a/d)n , n∈ Z,
we see that the pair (x , y) is a solutions since

ax  by  a( x0(b/d)n )  b( y0-(a/d)n )
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 ax0  a(b/d)n  by0 - b(a/d)n
 ax0 by0 c.

We now show that every solutions of this equation axbyc must be of the form of the
theorem .

Suppose x and y are integers with axbyc, since ax0by0c, subtracting we get
(axby) - (ax0by0)  0
a(x-x0) b (y-y0)  0
a (x-x0)  b (y0-y).................(**)

dividing by d
(a/d)(x-x0)  (b/d)(y0-y)

By theorem (1.2.4) (a/d , b/d)1.
By lemma ( if a,b,c Z , (a , b)1 and a∣bc , then a∣c),so (a/d)∣(y0-y) so there is an

integer n such that
(a/d)n  y0-y, so yy0-(a/d)n.

Substituting in (**)
a(x-x0)  b (y0-y)
a(x-x0)  b (a/d)n,

so xx0(b/d)n.
Corollary 1.5.3:

If (a , b)  1 and if x0 , y0 is a particular solution of the linear Diophantine equation
axbyc then all other solutions are given by
x  x0bt, y  y0-at , t ∈ Z .

Example (1):
Find the solution of the linear Diophantine equation 15x6y7.
Since (15 , 6)3 , 3∤7, it has no integral solution.
Example (2):
Find the general solution of the Diophantine equation 172x20y1000.

Solution :
We first find (127 , 20) by Euclidean Algorithm.

172  (20) (8)  12
20  12.1 8
12  8.1  4
8  4.1  0

∴(172 , 20)  4.
Since 4∣1000 the solution exists.Now express 4 as a linear combination of 172,20, thus

we get
4  12-8
 12-(20-12)
 12(2)-20
 (172-20(8))(2)-20

4  172(2)  (20)(-17).
Multiplying by 250 we get

1000  127(500)  (20)(-4250), so x0500 and y0-4250,
this is the one particular solution of the given Diophantine equation .
The general solution is given by
x  500(20/4)t  5005t ,
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y  -4250 -(127/4)t  -4250 -43t , t ∈ Z .
Example (3):
Find all positive solutions of the equation 172x  20y  1000

Solution :
In Example (2) we found the general solution of the given equation is
x  500  5t y  -4250 - 43t, t ∈ Z .
For a positive solutions the inequalities
500  5t  0  5t  -500  t  -100

-4250- 43t  0  -4250  43t  t  -98 36
43

thus -100  t  -98 36
43

i.e., t ∈ (-100 , -98 36
43

).

————————————-—————–
-101 -100 -99 -98

Since t ∈ Z ∴ t  -99.
x  500  5(-99)  5.
y  -4250 - 43(-99)  -4250  4257  7,
is the only positive solution .
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Chapter 2

Theory of Primes

Definition 2.1.1:
A natural number p 1 is called a prime number, or simply prime, if 1 and p are its

only positive divisors.
A positive integer greater than 1 which is not a prime is called a composite number, or

simply composite.
Primes less than 20 are : 2, 3, 5, 7, 11, 13, 17, 19. Note that 2 is the only even

prime.Number 1 is regarded
neither prime or composite.
Any prime P which divides a natural n is called a prime divisor of n.

Theorem 2.1.2

Every natural number n1, has a prime divisor.
Proof :

Either n is prime or composite, if n is prime then n itself is a prime divisor of n, and
there

is nothing left to prove.
If n is composite, then n has a least divisor (d).Certainly d is prime. For if d is not a

prime,
then it can be factorized.
Let d  d1d2 where 1 d1 d , 1 d2  d and both d1 ∣n ,d2 ∣n , this contradicts the
choice of d (that it’s the least divisor) hence d is a prime.

Lemma 2..1.3:
If a,b and c are positive integers such that (a, b)  1 and a∣bc, then a∣c.

Theorem 2.1.4:
If p is a prime and p∣ab then p∣a or p∣b.

Proof :
If p∣a, then we need to go no further.
Assume that p∤a and prove that p∣b.
Since p is prime (p, a)  1 hence ∃ x, y ∈ Z, such that
px  a y  1.
Multiply both sides by b we get

pbx  aby  b.
Since p∣pbx and p∣aby ,so by theorem 1.1.3
p∣pbx  aby  p∣ b (px  ay)  p∣b .

Lemma 2.1.5:
It is an extend of more than two terms:
If p is a prime and p∣a1a2 ... an , then p∣ak for some k, where 1≤ k ≤ n.

Proof :
We prove by induction.
If n  1 it is obviously follows,
If n  2 we just proved.
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Suppose that n  2 and whenever p divides a product of less than n factors, then it
divides at

least one of the factors.
Let p∣a1a2 ... an−1an , i.e , p∣ a1a2 ... an−1an.
By the first part of the theorem, either p∣an or p∣a1a2 .. an−1.
If p∣an the result is proved , if p∣a1a2 .. an−1 by induction p∣ai , for some i , 1 ≤ i ≤

n-1,
so in either case if p∣a1a2... an , then p∣ai for some i where 1 ≤ i ≤ n

Corollary 2.1.6:
If p, q1 ,q2,.. ,qn are primes,such that p ∣q1q2... qn then pqi for some i where 1 ≤ i ≤

n.
Proof :

By theorem above if p∣q1q2. . . qn , then p∣qi for some i, 1≤ i≤ n , but since qi is prime
so

it is not divisible by any natural number except 1 and qi itself. Since p  1, we are
forced to conclude that p  qi , for 1≤ i ≤ n.

Theorem 2.1.7
The Fundamental Theorem of Arithmetic.
Every positive integer greater than one can be written uniquely as a product of primes,

with the
prime factors in the product written in order of non-decreasing size.

Proof :
If the integer n is a prime, then the integer itself stands as a product with a single factor

and
the theorem is proved.
If n is a composite, then it has a least prime divisor pi so,

n  p1n1, 1  n1  n.
If n1 is a prime we have our representation.
If n1 is composite then it has a least prime divisor p2 ,

n1  p2n2 , 1  n2  n1.
Thus n  p1 p2 n2 , 1  n2  n1  n.
If n2 is prime then again we have our representation, otherwise
n2  p3n3 , where p3 is the least prime divisor of n2 , 1  n3  n2.
Thus,

n  p1 p2 p3 n3 , 1  n3  n2  n1  n.
The decreasing sequence n  n1  n2  n3  ... 1,
cannot continue indefinitely, so that after a finite number of steps, nk−i is a prime say

pk .
This leads to the prime factorization, n  p1p2.....pk.
To prove uniqueness of the factorization, suppose that n has another representation as a

product
of primes say
n  q1q2 ...qs, so

p1p2....pk  q1q2 ... qs.
We cancel the common prime factors of any of the two sides of the above equation,
remove them (if necessary) and get,

p1p2 ... pi  q1q2 .. qj ............................(1)
Where i ≥ 1 , j ≥ 1, all the p,s are different from the q,s. Since p1 divides the L.H.S of

(1) so
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it must divide the R.H.S of (1) as well i.e,
p1 ∣ q1q2... qj  p1  qr for some r where, 1 ≤ r ≤ j by corollary 2.1.6.
This contradicts the fact that all the p,s are different from q,s.
Hence the assumption that n can be represented as product of primes in two different

ways
is wrong and so the representation is unique .
Note that:
It is not necessary that all primes in the factorization of n be distinct, suppose that p1
occurs 1 times, p2 occurs 2 times, ...,pk occurs k times then,
n p1

1p2
2 . . . . pk

k , p1  p2  p3 .... pk ,  i ∈ Z , 1 ≤ i ≤ k.
This is called the standard form or canonical form of n.
Example (1):
Take (i) n  240  2. 2. 2. 2. 3. 5  24. 3. 5.

(ii) n  289  17.17  172.
(iii) n  1001  7.11 . 13
(iv) n  17640  2. 2. 2. 3. 3. 5. 7. 7  23.32. 51.72 .

How prime factorization can be used to find gcd.
Let min (a, b) denote the smaller or minimum of the two numbers a and b. Now
let the prime factorization of a and b be
a  p1

a1p2
a2 . . . . pn

an , bp1
b1p2

b2 . . . . pn
bn .

So we note the gcd of a, b to be
(a,b)  p1

mina1,b1p2
mina2,b2 .... pn

minan,bn.
Since for each prime pi , a and b share exactly min(ai , bi) factors of pi.
Example (2):

2484  22. 33. 231, 3960  23 . 32 .5. 11.
So, (2484, 3960)  22 . 32  36.
Similarly the lcm of a, b is seen to be

[a, b]  p1
maxa1,b1p2

maxa2,b2 .... pn
maxan,bn.

Where max (a,b) denotes the larger or maximum of a and b.
Example (3):

(i) 24  23.3
36  22.32

∴[24, 36]  23.32  72.
(ii) 15  3.5

21  3.7
∴[15,21]  3.5.7  105.

Lemma 2.1.8:
If x and y are real numbers, then max (x, y)  min (x.y)  xy

Proof :
If x ≥ y then min (x, y)  y and max (x,y)  x.

So, max (x, y)  min (x,y)  x  y.
If x  y then min (x, y)  x and max (x, y)  y.
then, max (x, y)  min (x. y)  x  y.

Lemma 2.1.9
Let m and n be relatively prime positive integers . Then if d is a positive divisor of m n,

there is
a unique pair of positive divisor d1 of m and d2 of n such that d  d1 d2.
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Conversely, if d1 and d2 are positive divisors of m and n respectively, then d  d1d2 is
a positive divisor of m.n .

Proof :
Let the prime power factorization of m and n be
m p1

m1p2
m2 . . . . . . . . . . . ps

ms , nq1
n1q2

n2 . . . . . . . . . . . . qt
nt .

Since (m, n)  1, so p1
m1 , p2

m2 , . . . . . . . . . , ps
ms , q1

n1 , q2
n2 , . . . . . . . . . . , qt

nt have no common
elements.

Therefore the prime factorization of mn is
mn p1

m1p2
m2 . . . . . . . . . . . ps

msq1
n1q2

n2 . . . . . . . . . . . . qt
nt .

If d is a positive divisor of mn, then
dp1

e1p2
e2 . . . . . . . . . . . ps

esq1
f1q2

f2 . . . . . . . . . . . . qt
ft ,

where 0 ≤ei ≤ mi for i  1, 2, ., s , 0 ≤ fj ≤ nj for j  1, 2, ...t.
Let d1  (d, m) and d2 (d, n) , so
d1  p1

e1p2
e2 . . . . . . . . . . . ps

es , d2  q1
f1q2

f2 . . . . . . . . . . . . qt
ft .

So, d  d1d2 and (d1 , d2)  1.
The uniqueness will left as an excersise .
Conversely let d1, d2 be positive divisors of m, n respectively then
d1  p1

e1p2
e2 . . . . . . . . . . . ps

es , 0 ≤ ei ≤ mi for i  1, 2, ...s,
d2  q1

f1q2
f2 . . . . . . . . . . . . qt

ft , 0 ≤ fj ≤ nj for j  1, 2, ...t.
∴d  d1 d2 p1

e1p2
e2 . . . . . . . . . . . ps

esq1
f1q2

f2 . . . . . . . . . . . . qt
ft ,

is clearly a divisor of m n ,where mn p1
m1p2

m2 . . . . . . . . . . . ps
msq1

n1q2
n2 . . . . . . . . . . . . qt

nt ,
since the power of such prime occurring in the prime power factorization of d is less

than
or equal to the power of that prime in the prime power factorization of m n.

Definition 2.1.10:
An integer is said to be square free if it is not divisible by the square of any integer

greater than 1.
This means that if
n p1

1p2
2 . . . . . . . . . . . pr

r

is square free then none of the  i is greater than 1 i.e., 0 ≤  i ≤ 1.
Determination of Primality:
In order to determine whether a given integer is prime or not, we make use of the

following theorem:
Theorem 2.1.11

Every composite natural number n has a prime divisor ≤ n .
Proof :

Since n is composite , it has a least prime divisor p, (Theorem 2.1.2), then
n  n1p . We must have p ≤ n . For if p  n , then n  n1p shows that
n1  n  p i.e, ∃ a divisor of n less than the least, which is a contradiction hence p ≤

n .
From Theorem 2.1.11, we see that in order to find out whether a given integer n is a

prime or not ,
we divide it by primes 2, 3,5 ,7, ..., p where p is the largest prime ≤ n , if none of
these primes divide n, then n is a prime.
Example 4:

Determine whether 2093 is prime or composite.

18



Solution :
2093 ≃ 45.75
45  2093  46.

Primes less than 46 are:
2,3,5,7,11,13,17,19,23,29,31,37,41,43
2∤ 2093 , 3∤ 2093 , 5∤ 2093 but 7∣2093 since 2093  7299  2093 is composite .
Example (5):

Determine whether 563 is prime or composite.
Solution :

563 ≃ 23.73
23  563  24.

Primes less than 24 are: 2,3,5,7,11,13,17,19,23
none of these primes divide 563 , so 563 is prime.
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2.2: The Sieve of Eratosthenes
In order to find all primes ≤ n where n ∈ Z , write down all numbers from 2 to n.
Then we cancel all the proper multiples of the primes up to n . In this process
those numbers which are not cancelled are primes.
Example (6):

Find all primes less than 100.
Solution :

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
Primes up to 100 are 2, 3, 5, 7 so we cancel their multiples from the list, so only the
following numbers are left :
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
which are primes .

Theorem 2.2.1: Euclids theorem:
There are an infinite number of primes.

Proof :
The proof will be by contradiction:
Let p1  2 , p2  3 , p3  5 , p4  7 , be primes in ascending order, and suppose that

there is a
last prime pn. Consider the positive integer p such that : p  p1p2. . . . . pn  1,
since p  1 by Theorem 2.1.7, then p is divisible by some prime k, but p1,p2, . . . . . , pn

are the
only prime numbers, so that k must be equal to one of p1,p2, . . . . . , pn i.e.k  pi,
where 1≤ i ≤ n  k∣p1,p2, . . . . . , pn.
combining the relation k ∣p1,p2, . . . . . , pn with k∣p, then
k∣p-p1,p2, . . . . . , pn  k∣1.The only positive divisor of 1 is 1 itself and since p  1,
a contradiction arises. Thus no finite list of primes is complete, so the number of
primes is in infinite .
- Let pn denotes the nth prime number in their natural order. If the next prime is pn1,
then it is easy to see that

pn1 ≤ p1p2. . . . . . pn  1  pn
n  1.

For example if n  3 then
p4  7  p3

3  1  53  1  126,
7  31  126.

Theorem 2.2.2:

If pn is the nth prime number, then pn ≤ 22n−1 .
Proof :
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We prove the theorem by induction.
The given inequality is true for n  1 as
2  p1  221−1  220  2.
Let the theorem be true for all integers up to n  k i.e. pk ≤ 22k−1 .
Now, pk1 ≤ p1p2pk  1

≤ 2122. . . . . . . . . 22k−1  1

≤ 2122223.....2k−1  1

From identity 1222....2k−1  2k -1,

pk1 ≤ 22k−1  1

≤ 22k−1 22k−1 (since 1 ≤ 22k−1 ∀k ∈ Z

≤ 2. 22k−1

pk1 ≤ 22k .
Completing the induction step and the proof .

Theorem 2.2.3:
The number 2 is irrational.

Proof :
To prove that 2 is irrational is equivalent to proving that 2 ≠ a/b for any a,b ∈ Z

i.e,
the equation a2  2b2, has no solution in Z. We can assume without any loss of

generality
that (a,b)  1, thus in particular both of them are not even. Both of them cannot be odd
either thus one of them is odd an the other is even. Clearly a is even , b is
odd , let a  2c , c ∈ Z then,
4c2  2b2  2c2  b2

 b2 is even  b is even,
which is a contradiction of the fact that b is odd.
Thus the equation a2  2b2 has no solution in Z , i.e. 2 ≠ a/b for any a, b ∈ Z
i.e. 2 is irrational .

Lemma 2.2.4:

The product of two or more integers of the form 4n  1 is of the same form.
Proof :

Let k  4n  1, k/ 4m  1
Then kk/  (4n  1) (4m  1)

 16 mn  4n  4m  1
 4 (4mn  n  m)  1
 4L  1 , where L  4mn  n  m.
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Which is of the desired form.
Theorem 2.2.5:

There is an infinite number of primes of the form 4n  3.
Proof :

In anticipation of a contradiction , let us assume that there exist only finitely many
primes

of the form 4n3 , call them q1, q2, . . . . . . , qs. Consider the positive integer
N  4 q1 q2. . . . . . . qs − 1  4 (q1 q2. . . . . . . qs − 1)  3,

and let N r1.r2. . . . rt be its prime factorization .
Because N is an odd integer, we have rk ≠ 2 for all k , so that each rk is either of the

form
4n1 or 4n3.By the lemma above for N take the form 4n3 as its clearly dose,
N must contain at least one prime factor ri of the form
4n3. But ri cannot be found among the listing q1,q2, . . . . . , qs , for this would lead to
a contradiction that rii ∣1 .
The only possible conculosion is that there are infinitly many primes of the form 4n3 .

Theorem 2.2.6: ( Dirichlet )
If a and b are relatively prime positive integers i.e (a, b)  1 , then the arithmetic

progression
a, a  b, a  2b, a  3 b
contains infinitely many primes.
Example(6):
(3, 4)  1 , therefore the arithmetic progression is
3, 3  4 , 3 2(4) ,3 3(4) , 3  4(4), 3  5(4),...........
i.e, the arithmetic progression is 3, 7, 11, 15, 19, 23, .....
contains infinitely many primes all of them are of the form 4n  3.
Similarly (1, 4)  1 therefore the arithmetic progression is :
1, 1  (4) , 1 2(4), 1  3(4), 1  4(4), 1  5(4) ,......... ,i.e. 1, 5, 9, 13, 17, 21,......
contains infinite number of primes of the form 4n  1 .

Theorem 2.2.7:
No Arithmetic progression of the form a, a  b , a  2b, contains only primes.

Proof :
Let a  nb  p where p is a prime.
If we put nk  n  kp, k  1, 2, 3,..., then the nk

th term in the progression is
a  nk b  a  (n  kp) b

 a nb  kpb
 p  kpb
 p (1  kb)  p∣a  nk b,

 a  nk b is composite, this means that the progression must contain infinitely
many composite numbers.
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2.3 Fermat Factorization
Lemma 2.3.1:

If n is an odd positive integer ,then there is a 1–1 correspondence between
factorization of

n into two positive integers and difference of two squares that equal n.
Proof :

Let n be an odd positive integer and let,
n  ab be a factorization of n into two positive integer.

Then n can be written as a difference of two squares since
n  ab  s2 - t2

where, s  (a  b)/2, t  (a -b)/2 are both integers, since a,b are both odd.
Conversely if n is the difference of two squares say:
n  s2 - t2 then,we can factor n to
n  (s - t) (s  t).
I will leave the proof a 1-1 correspondence to you.
To carry out the method of Fermat factorization, we look for the solution of the

equation
n  x2 - y2 by searching for perfect squares of the form x2 - n hence to find F.F of n
we search for among the sequence of integers.
t2 - n, (t  1)2 - n , (t  2)2 - n,...........,
where t is the smallest integer greater than n which leads to the equation
n  (n  1)2/2 - (n - 1)2/2.
Example (8):
Use Fermat factorization to factor 6077.
6077  77.96

77  6077  78.
So t  78 then,

t2 - n  (78)2 - 6077  7
(t 1)2 - n  (79)2 - 6077  164
(t 2)2 - n  (80)2 - 6077  323
(t 3)2 - n  (81)2 - 6077  484  222

So, 6077  (81)2 - (22)2

 (81 - 22) (81  22)
 59 (103).

Example (9):
Use F.F to factor 23449

23449  153.13
153  23449  154

So t154 then,
t2 - n  (154)2 - 23449  267

(t 1)2 - n  (155)2 - 23449  576  (24)2

23449  (155)2 - (24)2

 (155 - 24) (155  24)
 131 (179).

Fermat’s Numbers.
The numbers of the form :

Fn  22n  1,
are known as Fermats numbers. Fermat conjectured that for n ≥ 1 , the numbers Fn
are all primes and he proved that F1  5 , F2  17, F3  257, F4  65537
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are primes. Euler , however found in 1732 that
F5  222  1  232  1  4294967297,

 641 x 6700417,
is composite because it is divisible by 641, 6700417.
In 1880 , Landry proved that
F6  226  1  264  1  274177  67280421310721.
In fact no prime Fn has been founded beyond F4 , so the Fermat conjecture has not

proved
a happy one.An interesting property of Fermats numbers is displayed by the following

theorem.
Theorem 2.3.2

Any two Fermats numbers are relatively prime.
Proof :

Let Fn , Fnk (n, k ∈ Z ) be two Fermats numbers and let
m∣ Fn , m∣ Fnk .
Consider Fnk − 2

Fn
 22nk − 1

22n  1
 22n2k − 1

22n  1
 22n2k − 1

22n  1
 x2k − 1

x  1 where x  22n

 x2k−1 − x2k−2  x2k−3 − x2k−4 . . . . . . . .−1
 Fn ∣ Fnk - 2.
Now since m∣Fn , therefore m∣Fnk - 2,  m ∣ Fnk - ( Fnk - 2 ),
 m∣2 but Fn, Fnk are both odd numbers therefore m is odd,
and since m∣2 so, m  1. Hence (Fn , Fnk )  1 .
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2.4 Mersenne Numbers
Definition 2.4.1

If n is a positive integer and (n)  2n, then n is called a prefect number.
The integers that are equal to the sum of all their proper positive divisors are called

perfect numbers.
Example (10):

Since (6)  1  2  3  6  12.
Also (28)  1  2  4  7  14  28  56,
so that 6, 28 are perfect numbers.

Theorem 2.4.2:

The positive integer n is an even perfect number iff
n  2m−1 (2m - 1),

where m is an integer such that m ≥ 2 and 2m -1 is prime.
Theorem 2.4.3:

If m is a positive integer and 2m -1 is prime, then m must be prime.
Proof :

Assume that m is not prime, so that m  a.b where 1  a  m and 1  b  m, then

2m - 1  2ab - 1  (2a - 1) (2ab−1  2ab−2 . . . . . . . . 2a  1).
Since both factors on the R.H.S of the equation are greater than 1, we see that 2m- 1 is
composite if m is not prime.
Therefore if 2m - 1 is prime, then m must be also prime .

Definition 2.4.4:
If m is a positive integer, then Mm  2m - 1 is called the mth Mersenne number,
and if p is prime and Mm  2p - 1 is also prime then Mp is called a Mersenne prime.
Example (11):

The Mersenne number M7 27 - 1127 is prime, where the
Mersenne number M11  211 - 1  2047  23.89 is composite.

Theorem 2.4.5:
If p is an odd prime, then any divisor of the Mersenne number

Mp  2p - 1 is the form 2kp  1 where k is a positive integer.
Example (12):

Decide whether M13 is prime.
Solution :

we look for a prime factor not exceeding 8191 .
M13  213 - 1  8191.

8191 ≃ 90.504
Any such divisor (by Theorem 2.4.5) will be of the form 26k  1.The only candidates

primes
dividing M13 less than or equal to M13 are :
26 1  1  27 not prime,
26 2  1  53 prime, but 53∤ 8191,
263  1  79 prime, but 79∤ 8191 , so M13 is prime.
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Example (13):
Show that a positive integer n 1 is a perfect square iff all the

exponents in
the standard form of n are even.

Solution :
Let n be a perfect square say n  m2.
m  p1

1p2
2 . . . . . . . . . . pr

r be the standard form of m.
∴ n  m2  (p1

1p2
2 . . . . . . . . . . pr

r )2,
 p1

21p2
22 . . . . . . . . . . pr

2r ,
and all the exponents in the standard form of n are even.
Suppose conversely that

n  p1
21p2

22 . . . . . . . . . . pr
2r ,

n  (p1
1p2

2 . . . . . . . . . . pr
r )2,

 m2 .
Example (14):

Use Example (13) to prove that 2 is irrational.
Solution :

As we have seen, to prove that 2 is irrational is equivalent to prove that
a2  2b2 has no solution for a, b ∈ Z.
For if b  p1

1p2
2 . . . . . . . . . . pr

r , then
a2  21 p1

21p2
22 . . . . . . . . . . pr

2r ,
is impossible since all the exponents of the prime factors on the R.H.S. of the above

equation
are not even.Thus there do not exist a, b ∈ Z such that a2  2b2,
i.e. such that a2 /b2  2 i.e. such that a/b  2  2 is irrational.
Example (15):

If p ≥ 5 is a prime number, show that p2  2 is composite.
Solution :

If p ≥ 5 is prime number then its either of the form 6k  1 or 6k  5.
If p 6k  1, then,
P2  2  (6k  1)2  2

 36k2  12k  3  3 (12k2  4k  1)
 p2  2 is composite
If p  6k 5 , then
p2  2  (6k  5)2  36k2  60k  9  3 (12k2  20k  5)
 p2  2 is composite .
Example(16):

If p 2k - 1 for k ≥ 3 is prime show that k is an odd integer.
Solution :

If k is even , say k  2n then n ≥ 2.
2k - 1  22n - 1

 (2n)2 - (1)2

 (2n - 1) (2n  1).
Since n ≥ 2 , therefore 2n - 1  1, 2n  1  1,
 2k - 1 is composite which contradicts the hypothesis that 2k - 1 is prime
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hence k must be odd.
Example (17):

If p is prime , show that p∣ p
i , 1 ≤ i ≤ p - 1 .

Solution :
p
i  p!

p − i!i!

 pp − 1p − 2. . . . p − i − 1p − i!
p − i!i!

 pp − 1p − 2. . . . p − i − 1
i!

The numerator of the R.H.S of the above equation is the product of i consecutive
integers and

so is divisible by i!.
But since p is prime and i  p , so k∤ p for any integer k satisfying 2 ≤ k ≤ i ,thus

i!∣ (p - 1) (p - 2) .. ( p - (i -1)),
 p

i  pA, where

A  pp − 1p − 2. . . . p − i − 1
i! .

So, p∣ p
i , 1 ≤ i ≤ p - 1 .

Definition 2.4.6
Prime pairs p and p  2 , where p is a prime are called twin primes.

For example: 3,5, 5,7, 11,13, 17,19 are twin primes.
Example (18):
Show that if 1 is added to a product of twin primes, a perfect square is always obtained.

Solution :
Let p, p  2 be twin primes.

p (p  2)  1  p2  2p  1
 (p  1)2 .

Example (19):

Prove that any prime of the form 3n  1 is also of the form 6n  1.
Solution :

Let p a prime of the form 3n  1 then n must be even for if n is odd, then 3n  1 is
even i.e , composite.

Hence n  2k  p  3n  1  6k  1
 3(2k)  1 .
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Chapter 3

The Theory of Congruences
3.1 : Introduction to Congruences.
The special language of congruences that we introduce in this chapter is extremely

useful in
number theory. This language of congruences was developed at the beginning of the

19th

century by Karl Friedrich Gauss. One of the most famous mathematicians in history.
Definition 3.1.1:

Let m be a positive integer if a and b are integer we say that a is congruent to b modulo
m if m | (a- b).

If a is congruent to b modulo m, we write a ≡ b modm.
If m ∤ (a - b), we write a ≡ b modm, and say that a and b are incongruent module m.
Example(1):

We have 22≡ 4 (mod 9), since 9 ∣ 22 - 4 .
Likewise 3 ≡ - 6 (mod 9) and 200 ≡ 2 (mod 9). On the other hand 13 ≡ 5 (mod 9 )

since 9∤ 13 -5 .
Congruences often arise in everyday life. For instance, clocks work either modulo 12 or

24 for
hours, and modulo 60 for minutes and seconds, calendars work modulo 7 for days.

Theorem 3.1.2:
If a and b are integers then a ≡ b (mod m) iff there is an integer k such that a  b  k

m.
Proof :

If a ≡ b (mod m), then m | (a - b). This means that there is an integer k with km  a - b,
so that a  km  b.

Conversely if there is an integer k with a  b  km, then km  a - b, hence m | (a -
b),

and consequently a ≡ b (mod m).
Example(2):

We have 19 ≡ -2 (mod 7) and 19  -2 3.7 .
Remark 3.1.3
(1) Any two integers are congruent modulo 1. i.e. , a ≡ b (mod 1) ∀ a, b∈ Z ,
since 1 | a - b i. e , every integer is divisible by 1.
(2) (i) a ≡ 1 ( mod 2) if a is odd.

(ii) a ≡ 0 (mod 2) if a is even.
(iii) a ≡ b (mod 2) if a & b are of the same parity i. e, both of them are odd or both of

them are even.
3.2 : Congruent classes and complete Residue system:
Given an integer a , we get by division algorithm
a  qm  r 0 ≤ r ≤ m - 1  m.
This mean that if the integer a is divided by m , the possible remainders are : 0 , 1 , 2

,,m - 1.
Thus the set of integer is partitioned into m subsets
C0 , C1, C2 , ..., Cm−1 , which we call the Congruence Classes modulo m .
C0 consists of all those integers which leave the remainder 0 when divided by m ,
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i.e , the multiples of m . C1 consists of all those integers which leave the remainder 1
when divided by m. They are integers of the form mq  1 , q ∈Z.
In general Ci  mq  i , i  0 , 1 ,2 ,......., m- 1.
This set { 0 , 1 , 2 , , m - 1} is called the set of least non- negative residues (mod m).
Example (3) :
Take m  4 , then the set of integer is partitioned or divided into four congruence

classes :
C0  4q  0 i.e. ,.........- 8 ≡ - 4 ≡ 0 ≡ 4 ≡ 8......(mod 4)
C1  4q 1 i.e. ,..........-7 ≡ -3 ≡ 1 ≡5 ≡ 9.......(mod 4)
C2  4q  2 i.e. ,..........-6 ≡-2≡ 2≡ 6≡ 10........(mod 4)
C3  4q 3 i.e.,...........-5 ≡ -1≡ 3≡ 7 ≡11........(mod 4).
Here the set of least non-negative residues (mod 4) is { 0, 1 , 2, 3} .
If we take any integer ,then clearly it will belong to one of the congruences classes
C0 , C1 , C2 ,.... Cm−1 modulo m.
We can say that it will be congruent to either 0, 1, 2,.., or m - 1 (mod m ). If we take an
arbitrary element from each congruence class, C0, C1 , ... Cm−1 modulo m , then
we have a set called the complete residue system ( mod m ).
We formally define it as follows.

Definition 3.2.1:.
If ai is an arbitrary element of the congruence class Ci for i  0, 1 , 2 ,..,m-1.
Then the set A  { a0,a1,a2, ....,am−1} is called a complete residue system (mod m ),and
will be usually written as C.R.S. (mod m) .
It is straightforward to see that if A is a C.R.S (mod m), then it has the following

properties :
i) A has m elements.
ii) No two elements of A are congruent (mod m)

(If they are then they belong to the same congruence class (mod m))
Example (4):

Take m  7, then the congruence classes (mod 7) are:
C0  7q  0
C1 7q  1
C2  7q  2
C3  7q  3
C4  7q  4
C5  7q  5
C6  7q  6.
The set of least non-negative residue (mod 7) is {0, 1, 2, 3, 4, 5, 6}.
If we take an arbitrary element from each congruence class C0,C1,C2,C3,C4,C5,C6

(mod 7 ),
then we have a set of C.R.S. (mod 7 ). One such set is A {7, 15, 9, 24, 18, 40, 13}.
This set has seven elements & no two elements are congruent to each other (mod 7) to
exactly one element of { 0 , 1 ,2, 3 ,4, 5, 6}.

Theorem 3.2.2:
For any two integer a and b, a ≡ b (mod m) iff a & b leave the same non-negative
remainder when divided by m.

Proof :
Suppose a ≡ b ( mod m) so a  b km, k∈ Z.
Suppose that b leaves the remainder r when divided by m so

b  q m  r, q ∈ Z , 0 ≤ r  m.
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Now a b  k m
 q m  r  k m
 (q  k) m  r ,

which means that a also leaves the remainder r when divided by m.
Suppose conversely, that a & b leave the same remainder after division by m. Then
a  q1 m  r & b  q2 m  r, 0 ≤ r  m , q1,q2 ∈ Z,
∴ a - b ( q1 - q2 ).m  m ∣ a - b,
or a ≡ b (mod m) .
Example (5):
Since 58  8. 7  2 , 16  2.7 2 i.e , 58 & 16 leave the same remainder 2 , after

division by 7,
therefore 58 ≡ 16 (mod 7),
i.e, 58 & 16 are in the same congruence class (mod 7).

Theorem 3.2.3:
Congruence is an equivalence relation.

Let m ∈ Z & a,b,c,d ∈ Z. Then the following properties hold :
1) a ≡ a (mod m ), reflexive property.
2) If a ≡ b (mod m) then b ≡ a (mod m), symmetric property.
3) If a ≡ b ( mod m) , b ≡ c (mod m ), then a ≡ c (mod m), transitive property.
4) If a ≡ b (mod m ) & c ≡ d (mod m) , then a - c ≡ b - d (mod m) and a  c ≡ b  c

(mod m).
5) If a ≡ b (mod m) , then a  c ≡ b  c (mod m) and ac ≡ bc (mod m) for any c ∈ Z.
6) If a ≡ b (mod m), then an ≡ bn (mod m), for any positive integer n.

Proof :
1. For any a ∈ Z, we have m| a - a i.e., m|0  a ≡ a (mod m).
2. If m |a - b, then m| b - a. Therefore if a ≡ b (mod m), then b ≡ a (mod m).
3. a ≡ b (mod m)  a - b  km or a  b  km, k ∈ Z,

b ≡ c (mod m)  b - c  qm or b c  qm, q ∈ Z.
∴ a  c  q m  k m

a  c  (q  k) m  a ≡ c (mod m ).
4. a ≡ b (mod m)  a  b k m ..........(1)

c ≡ d (mod m)  c  d q m ..........(2)

subtracting (1) & (2) we get
a - c  (b - d )  (k - q ) m,

 a - c ≡ b - d (mod m).
Adding (1) & (2)

a  c  (b d )  (k  q ) m,
 a  c ≡ b  d (mod m)
Also
ac  (b  km )(d qm ),
 bd (bq  dk kqm) m

 ac ≡ bd (mod m).
5. a ≡ b (mod m)  a  b  k m,
∴ a  c  b  c  km,
 a  c ≡ b  c (mod m)
Also

ac  bc ckm,
 bc (ck)m

 ac ≡ bc (mod m).
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6. It will be proved by induction given that a ≡ b (mod m) i.e, the statement is true for
n1.

Let it be true for nk i.e., ak ≡ bk (mod m), k ∈ Z , k  1,
then

ak ≡ bk (mod m).
∵ a ≡ b (mod m),
∴ ak1 ≡ bk1 (mod m) by (4) in the theorem, so its true for n  k 1, so its true for all

n ∈ Z.
Example (6):

Since 19 ≡ 3 (mod 8 ), then

(1) 19  7 ≡ 3  7 (mod 8),
 26 ≡ 10 (mod 8).
(2) 19 - 4 ≡ 3 - 4 (mod 8),
 15 ≡ -1 (mod 8).
(3) 19.2 ≡ 3.2 (mod 8),
 38 ≡ 6 (mod 8).

Example (7) :
Use congruence to show that 41 divides 220 - 1.

Solution :

we have to prove that, 220- 1≡ 0 (mod 41), or 220 ≡ 1(mod 41).
To begin we select a power of 2 which gives an integer near to 41. To this end we have,
25 ≡ - 9 (mod 41)
∴(25)4 ≡ (-9)4 (mod 41)
220 ≡ (81)2 (mod 41)
Also we observe that
81 ≡ - 1 (mod 41)
(81)2 ≡ (-1)2 (mod 41)
(81)2 ≡1 (mod 41)
220 ≡ (81)2 (mod41) & (81)2 ≡ 1 (mod 41), by Theorem 3.2.3 part (3) we have
220 ≡ 1 (mod 41)  41∣ 220 - 1 .
Example (8):
Find the remainder obtained when the sum 1!  2! 3! ..100! is divided by 12.

Solution :
we have 4!  24 & 24 ≡ 0 (mod 12).

Thus for k ≥ 4, we have
k!  1.2.3.4.5......k
 4!.5.6......k
≡ 0 (mod 12),
∴ 1!  2! 3!  4!  5! ..........100! ≡ 1! 2!  3! 0  0 .......0(mod12),

≡ 1  2 6 (mod 12),
≡ 9 (mod 12).

Thus the remainder is 9 when the sum 1!  2! 3! .100! is divided by 12.
Example (9):

We have 14 ≡ 8 (mod 6)
7.2 ≡ 4.2 (mod 6) but we cannot cancel the common factor of 2

since 7 ≡ 4 (mod 6) .
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So it is not necessarily true that we preserve a congruence when we divide both sides by
an

integer. The true converse of this result is the following theorem.
Theorem 3.2.4:

If a,b,c and m are integers such that m  0 , d(c,m) and ac ≡ bc (mod m),
then a ≡ b (mod m/d).

Proof :
If ac ≡ bc (mod m), we know that m|(ac - bc)  m | c (a - b).
Hence there is an integer k with c(a - b) km . Dividing both sides by d, we have
(c/d)(a-b)k(m/d),  m/d∣(c/d)(a-b).
Since (m/d ,c/d)  1, by Theorem 1.2.7. it follows that (m/d)∣(a - b).
Hence a ≡ b (mod m/d).
Example(10):
Since 50 ≡ 20 (mod 15) and ( 10 ,15 ) 5 we see that
50/10 ≡ 20/10 (mod 15/5) or 5 ≡ 2 (mod 3 ).

Corollary 3.2.5:
If a , b, c & m are integers such that m  0 , (c ,m)  1 and ac ≡ bc (mod m),
then a ≡ b (mod m).

Proof :
Here d  1 & so a ≡ b (mod m/1) i.e., a ≡ b (mod m).

Theorem 3.2.6:

If a1 , a2,....,am is a complete residue system modulo m & ( a, m )  1,
then a a1 , a a2,....,a am is also a complete residue system modulo m.

Proof :
Let A { a a1, a a2,....,a am }.

A has m elements. So it is only needed to prove that no two elements of A are
congruent (mod m).

Suppose a ai ≡ a aj (mod m), i ≠ j
 m∣a (ai - aj )
 m∣( ai - aj ) (∵ (a ,m )  1)
 ai ≡ aj (mod m).
This contradicts the hypothesis that a1 , a2,.... am is C.R.S. (mod m).
Thus all the elements of A are incongruent (mod m) & is therefore a C.R.S.(mod m).

Theorem 3.2.7:
If a ≡ b (mod m1) & a ≡ b (mod m2 ).

Then a ≡ b ( mod [m1,m2 ]), where [m1, m2 ] is the least common multiple of m1 ,m2.
Proof :

a ≡ b (mod m1 )  m1 ∣(a - b) i.e., ( a- b) is a multiple of m1.
a ≡ b (mod m2 )  m2 ∣(a - b ) i.e., (a - b ) is a multiple of m2.

Since the l.c.m. of two integers divides their common multiple therefore [m1, m2]∣ a - b
 a ≡ b (mod [m1,m2]).

Theorem 3.2.8:

If a ≡ b (mod m1) , a ≡ b (mod m2),....., a ≡ b (mod mk)
whrer a ,b ,m1 ,m2,.....,mk ∈ Z with m1 ,m2,....,mk are positive integer, then
a ≡ b (mod [m1,m2,....,mk]).
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Corollary 3.2.9:

If a ≡ b(mod m1) & a ≡ b (mod m2) & (m1, m2)  1, then
a ≡ b (mod m1m2 ).

Proof :
If (m1, m2) 1, then [m1, m2] m1.m2.

so a ≡ b (mod [m1, m2])
 a ≡ b (mod m1 m2).

Example(10):
Use the theory of congruence

(i) to find the remainder when 250 is divided by 7.
(ii) Verify that 89∣244 - 1.

Solution :
(i) 23 ≡ 1 (mod 7)

∴ (23)16 ≡ (1)16 (mod 7)
248 ≡ 1 (mod 7 )
Also 22 ≡ 1 (mod 7)
∴ 250 ≡ 4 (mod 7 )
∴ remainder is 4.

(ii) we have
211 - 12047  2389  89∣211 -1,
211 - 1 ≡ 0 (mod 89 )
211 ≡ 1 (mod 89)
∴(211)4 ≡ 14 (mod 89)

244 ≡ 1( mod 89)
 89∣244 - 1.

33



3.3 Different Bases and Special Divisibility Tests
Consider the integer 935. we know that 935 is

9  102  3  101 5,
i.e., it is the value of the polynomial 9x2  3x  5. for x 10.
In general we can write any integer in the form of a polynomial,
rm 10m  rm−1 10m−1  rm−2 10m−2 .....r1 10 r0,
where 0 rm  10 & 0 ≤ ri  10, for i 0 ,1 ,2 ,..,m - 1.
Such an expression for a positiveve integer N is called its representation in the scale of

10
and 10 is called the base or radix.
For the sake of convenience we usually take the base as the integer 10.
However, any fixed integer greater than 1 can serve as a base and is clear from the

following theorem.
Theorem 3.3.1:

Let b be an integer  1, then every positive integer N can be written uniquely in terms
of powers of b as

N am bm  am−1 bm−1 ...... a2 b2  a1 b  a0 ,
where 0  am  b, 0 ≤ ai  b for i  1, 2, 3,....,m - 1.

Proof :
By Theorem (1.1.4)(Division Algorithm) we can find unique integers q1 and a0

satisfying
N  q1 b  a0, 0 ≤ a0  b.

If q1 ≥ b we can divide once more , obtaining
q1  q2 b  a1, 0 ≤ a1  b,

substituting for q1 in the above equation we get
N  (q2 b  a1 )b a0,
 q2b2  a1b  a0.

If q2 ≥ b , we divide once again obtaining
q2  q3 b  a2 , 0 ≤ a2  b.

Thus
N( q3b  a2 )b2  a1b  a0
 q3b3  a3b2  a1b  a0.

Since N  q1  q2 ......... ≥ 0 is a strictly decreasing sequence of integers, this process
must eventually terminate say at (m - 1)th stage where,

qm−1 qm b  am−1 , 0 ≤ am−1  b & 0  qm  b .
Setting am  qm , we reach the representation,

N ambm  am−1 bm−1 ..... a2 b2  a1b  a0 ........... (1)
The uniqueness of the expression follows from the uniqueness of the integers
a0,a1,a2,..........,am which completes the proof.
The representation of N in (1) is called the representation of N in the scale b and b is

called the base
or radix.The important point in all this is that N is completely determined by the

ordered array
am, am−1,....,a1,a0 of co-efficients with the powers of b and the plus sign between them.
Thus (1) may be written in the abbreviated from as

N (am, am−1, ...........,a1, a0)b
The base is specified at the right end . If no base is specified, it means that the integer is
written in the scale of 10. The system of writing integers in the base 10 is called
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Decimal system (from the Latin decem, 10).
After 10, the most commonly used base is 2 and in this case the system of writing

integers is
called the Binary system (from the Latin binarius, 2). In this system ai is either 0 or 1

and
we write an integer as sums of powers of 2. This system is frequently used in high

speed computers.
Although the expression for an integer in this case is lengthy, yet it only involves two

digits 0 &
1 which simplifies the mechanism of the computer. We are using the Decimal system

without
writing the base 10, through in fact.
Example(11):
1561  1.103  5.102  6.101 1  (1651)10 or (1561)
10 ∣1561
10 ∣156 - 1

↑
10 ∣15 – 6
∣ ↑
∣ 1→ 5

Example(12):
(i) If N 243 and b7, then

7 ∣ 243
7 ∣ 34 - 5
∣ ↑
∣ 4 → 6

243  (465)7  4.72  6.7  5.

(ii) N 345 , b  4,then
4 ∣ 345
4 ∣ 86 – 1
∣ ↑

4∣ 21 – 2
∣ ↑

4∣ 5 – 1
∣ ↑
∣ 1 1

345  1.44  1.43  1.42  2.4 1  345 (11121)4.
(iii) N 89, b  2
2 ∣ 89
2 ∣ 44 – 1
2 ∣ 22 – 0
2 ∣ 11 – 0
2 ∣ 5 – 1
2 ∣ 2 – 1
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∣ 1 – 0
89  1.26  0.25  1.24  1.23  0.22  0.2  1
 1.26  1.24  1.23  1  89 (1011001)2.

We are about ready to derive criteria for determining whether an integer is divisible by
9 or

11 without performing the actual division, for this we have.
Theorem 3.3.2:

Let p(x) 
m

k0

∑ Ckxk be a polynomial function of x with integral coefficients Ck .If a ≡

b (mod m),
then p(a) ≡ p(b) (mod m).

Proof :
Given that a ≡ b (mod m), therefore ak ≡ bk (mod m), for k0, 1, 2,.... ,m by Theorem

3.2.3.
∴ Ckak ≡ Ckbk (mod m), k  0, 1, 2,... ,m.
Adding the m1 congruence, we get

m

k0

∑ Ckak ≡
m

k0

∑ Ckbk (mod m),

or p(a) ≡ p(b) (mod m ).
Note:
If p(x) is a polynomial with integral coefficients, one says that a is a solution of the
congruence p(x) ≡ 0 (mod m) if p(a) ≡ 0 (mod m).

Corollary 3.3.3:
If a is solution of p(x) ≡ 0 (mod m), and a ≡ b (mod m),

then b is also a solution.
Proof :

By the Theorem 3.3.2 , if a ≡ b (mod m), then p(a) ≡ p(b) (mod m).
If a is a solution of p(x) ≡ 0 (mod m), then p(b) ≡ p(a) ≡ 0 (mod m), making b a

solution.
Theorem 3.3.4:

Let N  am10m  am−110m−1 .... a110  a0,
be the decimal expansion of the positive integer N and let
S  a0  a1 ..... am. Then 9∣N iff 9∣S.

Proof :
Consider p(x) 

m

k0

∑ akxk , a polynomial with integral coefficients. The key observation

is that
10 ≡ 1 (mod 9), which implies that p(10) ≡ p(1) (mod 9) but
p(10)  N & p(1)  a0  a1 .... am S, so that N ≡ S (mod 9),
 N ≡ 0 (mod 9) iff S ≡ 0 (mod 9),
which is what we wanted to prove.

Theorem 3.3.5:
Let N am10m  am−110m−1 .... a110  a0 ,
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be the decimal representation of the positive integer N, and let
T a0 - a1  a2 - a3 .........(-1)mam .
Then 11∣N iff 11∣T.

Proof :
Let p(x) 

m

k0

∑ akxk be a polynomial with integral coefficient. The key observation is

that
10 ≡ -1 (mod 11).
Therefore, p(10) ≡ p(- 1) (mod 11).
But p(10)  N and p(-1)  a0 - a1  a2 - a3 ....(-1) mam T,
So that N ≡ T (mod 11).
This implies that both N & T are divisible by 11 or neither is divisible by 11.
Example (12):
Without performing the divisions, determine whether N1571724 is divisible by 9 or

11.
Solution :

(i) The digital sum is S1 5 7 1 2 4 27 and 9∣27  9∣N.

(ii) The alternating sum is T4 - 2  7 -1  7 - 5  1  11 11 is divisible by 11 and so N
is divisible by 11.
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3.4 linear Congruences
A congruence of the form ax ≡ b (mod m), where x is an unknown integer is called a

linear
congruence in one variable.
We first note that if x  x0 is a solution of the congruence ax ≡ b (mod m), and if x1 ≡

x0 (mod m),
then ax1 ≡ ax0 ≡ b (mod m) , so that x1 is also a solution. Hence if one members of a

congruence
class modulo m is a solution , then all member of this class are solutions. How many of
the m congruence classes modulo m give solutionsthis is exactly the same as asking
how many incongruent solutions there are modulo m.

Theorem 3.4.1:
The linear congruence ax ≡ b (mod m) ......(1)

where a ≡ 0 (mod m), (a,m)  d, has solutions if and only if d∣b.
Furthermore, if the solutions of (1) exsist, they are exactly d in number.

Proof :
The congruence (1) is equivalent to the linear diophantine equation

ax - my b ............(2),
where y ∈ Z , by Theorem1.5.2 the equation (2) has solution iff d∣b and hene the
congruence (1) is solvable iff d∣b.This prove the first part of the theorem.
Suppose that d∣b by Theorem1.5.2 eq.(2) has solution given by

x x0  m
d t , y  y0  a

d t ,
where t ∈ Z and (x0 ,y0 ) is a solution of (2). By taking
t  0, 1 , 2,... , (d - 1), d , (d  1), (d  2),.....,
we get respectively
x  x0 , x 1

d m , x0 2
d m , x0 3

d m ,....., x0 d − 1
d m,

x0 m , xo m  1
d m , x0 m 2

d m,.......
It is clear that the first d solutions are distinct but the (d  1)th solution is the same as

the
first solution because
x0  m≡ x0 (mod m).

Similarly, the (d2)th solution is the same as the second solution as
x0 1

d m ≡ x0  m  1
d m (mod m) and so on , hence the congruence (1) has just

d incongruent solutions given by
x ≡ x0  ( m

d ) t (mod m ), t 0 , 1 ,2,.......,d- 1.

Corollary 3.4.2:
If (a,m )  1, then the linear congruence ax ≡ b (mod m)

has a unique (just one ) solution.
Example (13):

Solve if possible the congruence
(i) 18x ≡ 30(mod 42).
(ii) 2x ≡ 3 (mod 7).
(iii) 3x ≡ 5 (mod 6).
(iv) 9x ≡ 12 (mod 15).
(v) 7x ≡ 1 (mod 31).

Solution :
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(i) (18,42)  6 and 6∣30, hence the given congruence has d 6 solutions.
By inspection or by trails one solution is found to be
x ≡ x0 (mod 42)
x ≡ 4 (mod 42)
Therefore the six solutions are as follows
x ≡ 4 ( 42

6 ) t (mod 42) , t  0 ,1 ,2 , 3, 4, 5 .
i.e., x ≡ 4 7 t (mod 42)
x ≡ 4, 11 , 18 , 25 , 32 , 39 (mod 42).
(ii) since (2,7) 1 , therefore the given congruence has a unique solution by trail we

found
x ≡ 5 (mod 7)
x 57 t (mod 7), t0,
x ≡ 5 (mod 7).
(iii) since (3,6)  3 and 3∤ 5 and so the given congruence has no solution.

(iv) since (9,15)  3, 3∣12 ,we have 3 solutions.
x ≡ 3 (mod 15)
x ≡ 3  15

3 t (mod 15), t  0, 1 , 2
x ≡ 3  5 t (mod 15)
x ≡ 3, 8 ,13 (mod 15)

(v) since (7,31) 1, we have a unique solution.
x ≡ 9 (mod 31).

Definition 3.4.3:
Given an integer a with (a,m) 1, a solution of ax ≡ 1 (mod m) is called an inverse of

a modulo m.
Example (14):
Since the solution of 7x ≡ 1 (mod 31) satisfy x ≡ 9 (mod 31) [Example 13(v)].
So 9 and all integers congruent to 9 modulo 31 are inverse of 7 modulo 31.Since 9.7 ≡ 1

(mod 31),
7 is an inverse of 9 modulo 31.
When we have an inverse of a modulo m, we can use it to solve any congruence of the

form ax ≡ b (mod m),
let a be the inverse of a modulo m, so that aa ≡ 1 (mod m), then if ax ≡ b (mod m), we

can
multiply both sides of this congruence by a to find a(a x) ≡ b (mod m), so that
x ≡ b (mod m).
Example (15):
To find the solution of 7x ≡ 22 (mod 31) we multiply both sides of this congruence by 9

an
inverse of 7 modulo 31 to obtain 9.7x ≡ 9.22(mod 31).
Hence x ≡ 198 ≡ 12 (mod 31).

Theorem 3.4.4:
Let p be prime. The positive integer a is its own inverse modulo p iff
a ≡ 1 (mod p) or a ≡ - 1 (mod p).

Proof :
If a ≡ 1 (mod p) or a ≡ - 1(mod p), then

a2 ≡ 1 (mod p) so that a is its own inverse modulo p.
Conversly:
If a is its own inverse modulo p , then
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a2  a.a ≡ 1 (mod p), hence p∣ (a2 - 1 ).
Since a2 - 1 (a - 1)(a  1), either p∣ a - 1 or p∣a 1,
therefore either a ≡ 1 (mod p) or a ≡ - 1 (mod p).
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3.5 The Chinese remainder Theorem
We consider systems of congruences that involve only one variable, but different

moduli.
Such systems arose in ancient Chinese puzzles such as the following : find a number

that
leaves a remainder of 1 when divided by 3 , a remainder 2 when divided by 5 and a

remainder
of 3 when divided by 7.
This puzzle leads to the following system of congrunces:

x ≡ 1 (mod 3), x ≡ 2 (mod 5), x ≡ 3 (mod 7).
We now give a method of finding all solutions of systems of simultaneous congruences

such as above.
Theorem 3.5.1

The Chinese remainder theorem.
Let m1,m2,.....,mr be pair wise relatively prime positive integers,
i.e. , gcd (mi , mj ) 1 for i ≠ j ,then the system of congruences
x ≡ a1 (mod m1)
x ≡ a2 (mod m2)
.
.
.
x ≡ ar (mod mr),
has a unique solution modulo Mm1 m2 ....mr .

Proof :
First we construct a simultaneous solution to the system of congruences , let
Mk  M/mk  m1 m2 ..... mk−1 mk1 ....mr.
(Mk ,mk) 1 , since (mj ,mk ) 1 , j ≠ k. By Theorem3.4.3 we can find an inverse yk of

Mk
modulo mk, so Mk yk ≡ 1 (mod mk).
We now form the sum, x a1 M1 y1  a2 M2y2 ..... ar Mryr.
This integer x is a simultaneous solution of the r congruences.
We must show that x ≡ ak (mod mk ), k1,2,.....,r.
Since mk ∣M j , j ≠ k , we have Mj ≡ 0 (mod mk ).
Therefore in the sum for x all the terms expect the kth term are congruent to 0 (mod

mk)
hence x ≡ akMk yk ≡ ak (mod mk ), since Mk yk ≡ 1 (mod mk) .
We now show that any two solutions are congruent modulo M.
Let x0 and x1 be simultaneous solutions to the system of r congruences. Then for each

k
x 0 ≡ x 1 ≡ ak (mod mk ), so mk ∣ (x0 - x1 ).
Using Theorem (3.2.8). we see that M∣ (x0 - x).
So x0 ≡ x1 (mod M).
This shows that solution of the system of r congruences is unique modulo M.
Example (16):

To solve the system
x ≡ 1 (mod 3)
x ≡ 2 (mod 5)
x ≡ 3 (mod 7)

Solution :
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we have
M3.5.7105
M1  105/3  35
M2  105/5  21
M3  105/7  15.
To determine y1, we solve 35 y1 ≡ 1 (mod 3),
∴y1 ≡ 2 (mod 3).
To find y2, we solve 21 y2 ≡ 1 (mod 5),
∴y2 ≡ 1 (mod 5).
To find y3 we solve 15 y3 ≡ 1 (mod 7),
∴y3 ≡ 1 (mod 7).
Hence x ≡ a1 M1 y1  a2 M2y2  a3 M3y3 (mod 105)

≡ 1.35.2  2.21.1  3.15.1 mod (105)
≡ 157 (mod 105)
≡ 52 (mod 105)

Example (17):
Solve the system

x1 ≡ 1 (mod 5)
x2 ≡ 2 (mod 6)
x3 ≡ 3 (mod 7)

Solution :
we have M5.6.7210.

M1  210/5  42,
M2  210/6  35,
M3  210/7  30.
Find y1,y2,y3.
42 y1 ≡ 1 (mod 5)  y1 ≡ 3 (mod 5),
35 y2 ≡ 1 (mod 6)  y2 ≡ 5 (mod 6),
30 y3 ≡ 1 (mod 7)  y3 ≡ 4 (mod 7).
x ≡ a1 M1 y1  a2 M2y2  a3 M3y3 (mod 210),
≡1.42.3  2.35.5  3.30.4 (mod 210)
≡ 126  350  360 (mod 210)
≡ 836 (mod 210)
≡ 206 (mod 210)
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3.6 : Applications of Congruences
Using congruences we can develop divisibility tests for integers based on their

expansions
with respect to different bases. We begin with tests that use decimal notation let
n (ak a k−1 .... a1 a0 )10 , then
n ak 10k  a k−1 10k−1  ...... a110  a0 , 0 ≤ a i ≤ 9 for i  0, 1 ,2,.... ,k.
First , we develop tests for divisibility by powers of 2.
Since 10 ≡ 0 (mod 2 )  10i ≡ 0 (mod 2i ) for all positive integers i.
Hence,
n ≡ (a0 )10 (mod 2)
n ≡ (a1 a0 )10 (mod 22)
n ≡ (a2 a1 a0 )10 (mod 23 )
.
.
.
.
n ≡ (ak−1 ak−2 ..... a2 a1 a0 )10 (mod 2k ) .
These congruence tells us that to determine whether an integer n is divisible by 2 , we

only
need to examine the last digits for divisibility by 2 . similarly to determine whether n is
divisible by 4. we only need to check the integer made up of the last two digits of n for
divisibility by 4.
In general to test n for divisibility by 2i , we only need to check the integers made up of

the
last i digits of n for divisibility by 2i.
Example(17):
Let n32688048 . we see that 2∣n since 2∣8 , 4∣n, since 4∣48, 8∣n, since 8∣048 i.e.,

8∣48,
16∣n, since 16∣8048 , but 32∤n, since 32∤88048.
Next , we develop tests for divisibility for powers of 5.
Since 10 ≡ 0 (mod 5) ,we have 10i ≡ 0 (mod 5I ).
Hence divisibility test for powers of 5 are analogous to those of powers of 2. we only

need to
check the integers madeup of the last i digits of n to determine whether n is divisible by

5i .
Example (18):

Let n15535375 . 5|n, since 5|5. 25|n, since 25|75 .
125|n, since 125|375, but 625 ∤ n, since 625 ∤ 5375.
Next, we develop tests for divisibility by 3 and by 9.
Note that both the congruences 10 ≡ 1 (mod 3) and 10 ≡ 1 (mod 9) hold .
Hence
10k ≡ 1 (mod 3) and 10k ≡ 1 (mod 9), so
(ak ak−1 ... a2 a1 a0 )  ak 10k ak−110k−1  .... a1 10  a0,

≡ ak ak−1  .... a1  a0 (mod 3 ) and (mod 9 ).
Hence we only need to check whether the sum of digits of n is divisible by 3 or by 9 , to
see whether n is divisible by 3 or by 9.
Example (19):
Let n  4127835, then the sum of digits of n is S 4127835  30.
Since 3∣30 but 9∤30 , so 3∣n, but 9∤ n.
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A rather simple test can be found for divisibility by 11.

Since 10 ≡ -1 (mod 11), we have
(ak ak−1.... a1 a0 )10 ≡ ak 10k ak−1 10k−1  .... a1 10  a0,

≡ ak (-1)k ak−1 (-1)k−1 ....- a1 a0 (mod 11 ).

This shows that (ak ak−1.... a1 a0 )10 is divisible by 11 iff
a0 - a1  ...... (- 1)k ak , the integer formed by alternately adding and subtracting the

digits is divisible by 11.
Example (20):
We see that 723160823 is divisible by 11, since alternately adding and subtracting its

digits yields to
T  3- 2 8 - 0  6 - 1  3 - 2  7  22, which is divisible by 11.
On the other hand 33678924 is not divisible by 11,
since T  4 - 2  9 - 8 7 - 6  3 - 3 4 , 11∤ 4.
Next we develop a test simultaneously test for divisibility by the primes 7, 11, 13.
Note that 7.11.131001 and 103  1000 ≡ -1 (mod 1001).
Hence
(ak ak−1.... a1 a0 )10  ak 10k ak−1 10k−1  .... a1 10  a0,

≡ (a0  10 a1 100 a2 )  1000 (a3 10 a4 100 a5 )
(1000)2 (a6  10 a7 100 a8 ) ........ (mod 1001)

≡ (100 a2  10 a1 a0 ) - (100 a5  10 a4 a3)
(100 a8  10 a7 a6 ) - ....... (mod 1001)
≡ (a2 a1 a0 )10 - (a5 a4 a3 )10 (a8 a7 a6 )10 ...... (mod 1001).

This congruence tells us that an integer is congruent modulo 1001 to the integer formed
by

adding and subtracting the three digits integers with decimal expansions formed from
successively blocks of three decimal digits of the original number,where digits are

grouped
starting with the right most digit. As a consequence since 7,11 and 13 are divisors of

1001,
we need to check whether this alternating sum and difference of blocks of three digits is
divisible by 7 , 11 or 13.
Example (21):
Let n  59358208 . Since the alternating sum and difference of the integers formed

from blocks of three
digits 208 - 358  59  - 91 which is divisible by 7 & 13 but not by 11, so n is divisible

by 7 and 13
but not by 11.
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Chapter 4
Theorems of Wilson , Fermat & Eluer
4.1 Wilson’s Theorem & Fermat’s Little Theorem

Theorem 4.1.1:
Wilson’s Theorem

If p is prime , then p − 1! ≡ −1modp
Proof :

When p  2 then,
(p-1)! ≡ 1 ≡ -1(mod2)

So the Theorem is true for p2.

Let p  2 by Theorem 3.4.1, for each integer a with 1 ≤ a ≤ p − 1, there is an inverse

a,
1 ≤ ā ≤ p − 1 ,with aa ≡ 1modp.
By Theorem 3.4.4, the only positive integers less than p that are their own inverse are

1 & p − 1.

So we group the integers from 2 to p − 2 into p − 3/2 pairs of integers, with the
product of each pair

congruent to 1 modulo p.
Hence we have

2.3.....(p-3)(p-2) ≡ 1modp.
We multiply both sides of this congruence by 1 and p − 1 t0 obtain

p − 1! ≡ 1.2.3.....(p-3)(p-2)(p-1) ≡ 1. p − 1 ≡ −1modp.
Example (1):

Let p  7 we have (7-1)!  6!  1.2.3.4.5.6
We rearrange the factors in the product grouping together pairs of inverses modulo 7.

We note that
2.4 ≡ 1mod7, 3. 5 ≡ 1mod7, so 6!

≡ 1. 2.43.5. 6 ≡ 1.6 ≡ −1mod7
The proof of wilson’sTheorem, has given by Joseph lagrange in 1770.
Now we see the converse of Wilson’s Theorem.

Theorem 4.1.2:
If n is a positive integer such that

(n-1)! ≡ −1modn then n is a prime
Proof :

Assume that n is a composite integer and that
(n-1)! ≡ −1modn.

Since n is composite, so n  ab , where 1  a  n, 1  b  n .
Since a  n , then a ∣(n-1)! because a is one of the n-1 numbers multiplied together

to form(n-1)!.
Since
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(n-1)! ≡ −1modn  n ∣ n − 1!  1.
By Theorem 1.1.2 a also divides (n-1)!  1.
By Theorem 1.1.3, since a ∣ n − 1! and a ∣ n − 1!  1 we conclude that
a ∣ n − 1!  1 − n − 1!  1,
which is a contradiction since a 1.
Example (2):
Since (6-1)! ≡ 5! ≡ 120 ≡ 0mod6 by Theorem 4.1.2, it is obvious that 6 is not a

prime.
Theorem 4.1.3:

If p is a prime of the form 4k1 then the congruence x2  1 ≡ 0modp is solvable.

Proof :
Since p  4k1 then consider the following congreunce :

4k ≡ −1modp
4k − 1 ≡ −2modp
4k − 2 ≡ −3modp
.
.
2k  1 ≡ −2kmodp
(2k! ≡ 2k!modp

Multiplying the above congrunces we get
4k! ≡ 2k!2modp
or p − 1! ≡ 2k!2modp
or 2k!2 ≡ p − 1!modp
i.e., 2k!2 ≡ −1modp
or 2k! 2  1 ≡ 0modp

Hence x ≡ 2k!modp is the solution of the congrunce, x2  1 ≡ 0modp.
Example (3):

Verify the above theorem if p 13.
Solution :

p  13  4.31, so k3
we want to know the solution of the congrunce
x2  1 ≡ 0mod13
is x ≡ 2.3!mod13
x ≡ 6!mod13
x ≡ 6.5.4.3.2.1mod13
x ≡ 30.24mod13
x ≡ 4−2mod13
x ≡ −8mod13
x ≡ 5mod13
So 52  1 ≡ 0mod13
i.e., 26 ≡ 0mod13

Example (4):
Show that 18!≡ −1mod437

Solution :
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437 ≡ 19  23.
By Wilson’s Theorem 18!≡ −1mod19 → 1
Also by Wilson’s Theorem we have 22!≡ −1mod23
i.e., 22.21.20.19.(18)! ≡ −1mod23
(-1).(-2).(-3).(-4)(18)! ≡ −1mod23

24(18)! ≡ −1mod23
1(18)! ≡ −1mod23

(18)! ≡ −1mod23 → 2

Since (19,23) 1 , therefore from 1 and 2 ,
(18)! ≡ −1mod19  23  (18)! ≡ −1mod437.

Theorem 4.2.1:
Fermat’s Little Theorem

If p is a prime and a is a positive integer with p∤ a then ap−1 ≡ 1modp
Proof :

Let {0 , 1 , 2 , ....... , p-1} be a C.R.S.(mod p) 1
∵ p∤ a ∴ (a,p)1,then Theorem 3.2.6 implies that

{0, a , 2a , ......... , a(p-1)} is also a C.R.S.(mod p) 2

Thus each element in 1 congruent (mod p) to some element of 2 though not
necessarily in the same order.
Since 0 ≡ 0modp, then
a.2a.3a. . . (p-1)a ≡ 1.2.3. . . p − 1modp
i.e. , ap−1p − 1! ≡ p − 1!modp
Dividing both sidesby (p-1)! which is the coprime to p , we get

ap−1 ≡ 1modp.
Example (5):

Let p  7 and a  3, then
1.3 ≡ 3mod7, 2.3 ≡ 6mod7, 3.3 ≡ 2mod7
4.3 ≡ 5mod7, 5.3 ≡ 1mod7, 6.3 ≡ 4mod7
consequently,
(1.3)(2.3)(3.3)(4.3)(5.3)(6.3) ≡ 3.6.2.5.1.4mod7
So that

366! ≡ 6!mod7 (6! since 6!,7  1)
36 ≡ 1mod7.

Example (6):
Find the least positive residue of 3201 modulo 11 with the help of F.L.T.
∵ 3,11  1 by F.L.T. 311−1 ≡ 1mod11

 310 ≡ 1mod11
hence (31020 ≡ 120mod11.
Thus

3201  31020. 3 ≡ 3mod11
∴ 3201  3mod11.

Corollary 4.2.2
If p is a prime and a is a positive integer then ap ≡ a modp.
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Proof :
If p ∣a , then a ≡ 0modp  ap ≡ 0modp  ap ≡ 0 ≡ amodp,
hence ap ≡ amodp.
If p ∤ a , then by Fermat’s Little Theorem ap ≡ amodp.
Example (7):

If p is a prime prove that (p-1)! ap  a ≡ 0modp
Solution :

(p-1)! ≡ −1modp
ap ≡ a modp

(p-1)! ap ≡ −a modp
(p-1)! ap  a ≡ 0 modp

Theorem 4.2.3:
If p is a prime and a is an integer with p ∤ a , then ap−2 is an inverse of a

moduls p.
Proof :

If p ∤ a by F.L.T we have a. ap−2  ap−1 ≡ 1modp,
hence ap−2 is an inverse of modulo p.

Example (8):
Since 2,11  1, by F.L.T. 210 ≡ 1mod11
hence 2.29  210 ≡ 1mod11 ∴29 is an inverse of 2 modulo 11.

Corollary 4.2.4:
If a and b are positive integers and p is a prime with p ∤ a ,then the solution of the

linear
congruence ax ≡ bmodp are the integers x such that x ≡ ap−2bmodp.

Proof :
Suppose that ax ≡ bmodp .Since p ∤ a from theorem above ap−2 is an inverse of

a (mod p).
Multiplying both sides of the original congruence by ap−2 , we have

ap−2ax ≡ ap−2bmodp,
hence ,

x ≡ ap−2bmodp .

Theorem 4.2.5:
If p and q are different primes such that ap ≡ amodq and aq ≡ amodp , then
apq ≡ amodpq.

Proof :
Given that ap ≡ amodq
∴ apq ≡ aqmodq  apq ≡ aqmodq.
By corollary 4.2.2 aq ≡ amodq,
hence

apq ≡ amodq  1 .
Similary

apq ≡ amodp  2 .
∵ p,q  1 , therefore by corollary 3.2.9
apq ≡ amodpq.
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Theorem 4.2.6:
For any prime p and a,b ∈ Z ,then

a  bp ≡ ap  bpmodp.
Proof :

We have
a  bp  ap   p

1 a
p−1b   p

2 a
p−2b2 . . . . . . p

p−1 abp−1  bp.
∵ p ∣  p

i , i  1,2,......,p-1 ( Example 7 chapter 2)
∴  p

i  ≡ 0modp
Hence

a  bp ≡ ap  bpmodp.
Example (9)

(i) If ( a,35  1 , show that a12 ≡ 1mod35
(ii) If a,42  1 , show that 168∣ a6 − 1.

(i) ( a,35  1  a,5  1 , ( a,7  1.
Now since ( a,5  1,
∴ a4 ≡ 1mod35
∴ a43 ≡ 1mod5
i.e , a12 ≡ 1mod5  1
Also since  a,7  1
∴ a6 ≡ 1mod7
∴ a62 ≡ 12mod7
∴ a12 ≡ 1mod7  2

Since ( 5 , 7 )  1, from 1 and 2 ,
a12 ≡ 1mod35.

(ii) a,42  1  a,2  1 , a,3  1, a,7  1
Now by F.L.T. a,3  1, a2 ≡ 1mod3,

 a6 ≡ 1mod3  1 ,

and a,7  1  a6 ≡ 1mod7  2

∵ a,2  1  a is odd and so 8∣ a2 − 1 (Example 8 chapter 1).
i.e., a2 − 1 ≡ 0mod8
or a2 ≡ 1mod8

a23 ≡ 13mod8
i.e., a6 ≡ 1mod8  3

Since 8,3 and 7 are relatively prime in pairs
∴ a6 ≡ 1mod8.3.7

i.e., a6 ≡ 1mod168
 168 ∣ a6 − 1.

Example (10)
Prove that a21 ≡ amod15 ∀a ∈ Z.

We have a3 ≡ amod3 ∀a ∈ Z,
a37 ≡ a7mod3

or a21 ≡ a3a3amod3
a21 ≡ a. a. amod3
a21 ≡ a3mod3
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a21 ≡ amod3  1
Also a5 ≡ amod5 ∀a ∈ Z

a20 ≡ a4mod5
a21 ≡ a5mod5

or a21 ≡ amod5  2

from 1 and 2 since (3,5)1 , therefore
a21 ≡ amod15.

Example (11)
Employ Fermats theorem to prove that if p is an odd prime , then
(i) 1p−1  2p−1  3p−1 . . . . . . . .p − 1p−1 ≡ −1modp
(ii) 1p  2p  3p . . . . . . . . . .p − 1p ≡ 0modp.

Solution :
(i) Since (1,p)1 ∴ 1p−1 ≡ 1modp

(2,p)1 ∴ 2p−1 ≡ 1modp
(3,p)1 ∴ 3p−1 ≡ 1modp

.

.

.
(p-1,p)1 ∴ p − 1p−1 ≡ 1modp

Adding this congrunces , we get
1p−1  2p−1  3p−1 . . . . . . .p − 1p−1

≡ 1  1  1 . . . . . .1modpp − 1 times )
≡ p − 1modp  1

p ≡ 0modp  p − 1 ≡ −1modp  2 ,

from 1 and 2 we get
1p−1  2p−1  3p−1 . . . . . . . .p − 1p−1 ≡ −1modp

(ii) By corollary 4.2.2, we get
1p ≡ 1modp , 2p ≡ 2modp, . . . . . . . . , p − 1p ≡ p − 1modp,
∴ 1p  2p  3p . . . . . . .p − 1p ≡ 1  2  3 . . . . . . . . . p − 1modp

≡ pp − 1
2 modp

≡ 0modp
(∵p is odd ,∴ p − 1 is even & so pp − 1

2 is a multiple of p)
Example (12)
Assume that p & q are distinct odd primes such that p-1∣q-1 , if (a,pq)1 ,
show that aq−1 ≡ 1modpq.

Solution :
p-1∣q-1  q − 1  kp − 1, k ∈ Z.

Now since (a,q)1
∴ aq−1 ≡ 1modq  1

Also (a,p)1 ∴ ap−1 ≡ 1modp
now ap−1k ≡ 1kmodp
or akp−1 ≡ 1modp
i.e., aq−1 ≡ 1modp  2
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Since (p,q)1 , therefore from 1 and 2 we have
aq−1 ≡ 1modpq.

Example (13)
If p & q are distinct primes , prove that pq−1  qp−1 ≡ 1modpq.

Solution :
∵ p,q  1, by F.L.T. ,we have

pq−1 ≡ 1modq.Since q ∣ qp−1 ∴ qp−1 ≡ 0modq
 pq−1  qp−1 ≡ 1modq  1

Similarlly qp−1 ≡ 1modp , pq−1 ≡ 0modp
∴ pq−1  qp−1 ≡ 1modp  2

∵ p,q  1, therefore 1 and 2 imply that
pq−1  qp−1 ≡ 1modpq.

4.3 Euler ,s Theorem

Definition 4.3.1 :
let n be a positive integer.The Eulers phi-function n is defined to be the number of

positive integers not exceeding n that are relatively prime to n.
This function is named after the great Swiss Mathematication Leonhard Euler .

n for 1 ≤ n ≤ 12,
n 1 2 3 4 5 6 7 8 9 10 11 12
n 1 1 2 2 4 2 6 4 6 4 10 4

Definition 4.3.2 :
A reduced residue system (R.R.S.) modulo n is a set of n integers such that each

element of the set is
relatively prime to n and no two differents element of the set are congurent modulo n.
Example (14)

The set 1,3,5,7 is a reduced residue system modulo 8.
The set -3,-1,1,3 is also such a set.

Theorem 4.3.3 :
If a1, a2, . . . . . . . . . am is a reduced residue system (R.R.S) (mod m) and (a,m)  1

then
{ aa1, aa2, . . . . . . . . , aam is also a R.R.S (mod m).

Proof :
Let A aa1, aa2, . . . . . . . . , aam

1-A has m element.
2-No two element of A are congurent modulo m ,for if aai ≡ aajmodm for i ≠ j ,

then
since a,m  1 this imlies that ai ≡ ajmodm,which is a contradiction because
the integers a1, a2, . . . . . . . . . am,
are incongurent (mod m) as a1, a2, . . . . . . . . . am is a R.R.S.(mod m).
Hence all the integes of A are incongurent (mod m) and is therefore a R.R.S.(mod
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m).
Example (15):

The set 1,3,5,7 is a R.R.S.(mod 8).Since 3,8  1, then
3.13, 3.39, 3.515, 3.721 is also a R.R.S.(mod 8).

Theorem 4.3.4
If m is a positive integer and a is a an integer with a,m  1, then

am ≡ 1modm.
Let A  a1, a2, . . . . . . . . . am be a R.R.S.(mod m) .Therefore by Theorem 4.3.3 ,
B  aa1, aa2, . . . . . . . . . , aam is also a R.R.S.(mod m).This implies that the integers in

the set
B are congurent modulo m to the integers in the set A ,though not necessarly in the

same
order. Multiplying out we get

aa1  aa2 . . . . . . . . . aam ≡ a1  a2 . . . . . . . . . ammodm
or

ama1  a2 . . . . . . . . . am ≡ a1  a2 . . . . . . . . . ammodm
Since a1  a2 . . . . . . . . . am,m  1, from corollary 3.2.5, we conclude that

am ≡ 1modm.
Example (16):
We know that both the set 1,3,5,7 and 3.1,3.3,3.5,3.7 are R.R.S.(mod 8),
hence we have the same least positive residues (mod 8).
Therefore

3.1,3.3,3.5,3.7 ≡ 1.3.5.7mod8
341.3.5.7 ≡ 1.3.5.7mod8.

Since 1.3.5.7,8  1,
so that

3n ≡ 34 ≡ 1mod8.
Example (17)
We know that 29−1  26−1  25  32 ≡ 5mod9
is an inverse of 2 (mod 9),since

2.29−1 ≡ 1mod9,
64 ≡ 1mod9.

So we can solve linear congrunce ax ≡ bmodm where a,m  1,by multiplying
both

sides of the congrunce by am−1 to obtain
am−1ax ≡ am−1bmodm,

therefore the solutions are those integers x such that
x ≡ am−1bmodm.

Example (18)
The solutions of 3x ≡ 7mod10 are given by

x ≡ 310−1. 7 ≡ 33.7 ≡ 9mod10, (since 10  4)
Definition 4.3.5

An arithmatic function is a function that is defined for all positive integers.
Definition 4.3.6

An arithmatic function f is called multiplicative if fmn  fmfn,
whenever m and n are relatively prime positive integers.It is called completely
multiplicative if fmn  fmfn, for all positive integers m and n.
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Theorem 4.3.7
If f multiplicative function and if n  p1

1p2
2 . . . . . . . . . . . ps

s is the prime
factorization of the

positive integer n, then
fn  fp1

1fp2
2. . . . . . . . . . fps

s.
(The proof of this theorem is given by induction try ?)

Theorem 4.3.8
If p is prime then p  p − 1.Conversely if p is a positive integer

with
p  p − 1, then p is prime.

Proof :
If p is a prime then every positive integr less than p is relatively prime to p.

Since
there are p − 1 such integers we have p  p − 1.
Conversely suppose p  p − 1, if p is compositive,then p has a divisor d with

1  d  p
and p and d are not relatively prime .
Since we know that at least one of the p − 1 integers 1,2, . . . . . . . . . . , p − 1 namely d is

not
relatively prime to p , p ≤ p − 2. Hence if p  p − 1 then p must be prime.

Theorem 4.3.9
Let p be a prime and a positive integer.Then p  p − p−1.

Proof :
The positive integer less than p that are not relatively prime to p are those integers

not
exceeding p that are divisible by p,i.e.,are the multiples of p In the set

1,2,3, . . . . , p
every pth number is a multiple of p .Thus there are p

p  p−1 multiples of p in the
above set. Hence the number of integers ≤ p that are relatively prime to p are

p − p−1 ,i.e.,
p  p − p−1  p1 − 1

p .
Example (19)

Using the above we find that
53  53 − 52  100
210  210 − 29  512
112  112 − 11  110.

Theorem 4.3.10
The function  is multiplicative i.e., if m,n  1, then

mn  mn.
Corollary 4.3.11

If m1,m2, . . . . . . . . ,mk are natural numbers that are relatively prime in pairs
then

m1m2.. . . . . . . .mk  m1  m2 . . . . . . . . . . . mk
Example (20):

Prove that if n is an odd integer then 2n  n.
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Solution :
If n is an odd then 2,n  1 and so

2n  2n
2n  1.n
n  n.

Theorem 4.3.12
Let m  p1

1 . p2
2 . . . . . . . . . pr

r , where pi are distinct primes and  i ∈ Z, then
m  m1 − 1

p1
1 − 1

p2
. . . . . . . . . . . 1 − 1

pr
.

Proof :
Since the pi are distinct primes ,therefore, the numbers p1

1 , p2
2 , . . . . . . . . , pr

r are
relatively primein pairs.

Therefore by Corollary 4.3.11,we have
p1

1 . p2
2 . . . . . . . . . pr

r  p1
1.p2

2. . . . . . . . . .pr
r

 p1
11 − 1

p1
. p2

21 − 1
p2
. . . . . . . . pr

r1 − 1
pr


 p1
1 . p2

2 . pr
r1 − 1

p1
. 1 − 1

p2
. . . . . . . . . . 1 − 1

pr


 m1 − 1
p1
. 1 − 1

p2
. . . . . . . . . . 1 − 1

pr
.

Example (21)
100  22.52  1001 − 1

2 1 −
1
5   40.

720  24.32. 5  7201 − 1
2 1 −

1
3 1 −

1
5   192

450  2.32.52  4501 − 1
2 1 −

1
3 1 −

1
5   120

Example (22)
If f is an arithmatic function ,then

d/12
∑ fd  f1f2f3f4f6f12

for example

d/12
∑ d2  12  22  32  42  62  122

 1  4  9  16  36  144  210.
The following result which states that n is the sum of values of the phi-function at all

the
positive divisors of n will be useful.

Theorem 4.3.13

Let n be positive integer,then
d/n
∑ d.

Let n  p, then the divisor of p are ,1,p,p2, . . . . , p. Therefore

d/n
∑ d  1  p  p2 . . . . .p
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 1  p − 1  p2 − p . . . . . . . .p − p−1
 p  n.

Hence the result is true for n  p.
Now let n  p1

1 . p2
2 . . . . . . . . . pr

r . Consider the product
1  p1  p1

2 . . .p1
r  1  p2  p2

2 . . .p2
r . . . . . .

1  pr  pr
2 . . .pr

r

∑p11 .p22 . . . . .prr

 ∑p1
1 . p2

2 . . . . . pr r 0 ≤  i ≤  i, i  1,2,3, . . . . . . , r

As  i varies between 0 and  i , the product of p1
1 . p2

2 . . . . . pr r varies over all the
divisors of n .

This implies that the R.H.S. is equal to
d/n
∑ d. The L.H.S. by the result proved for

n  p is equal to
p1
1 . p2

2 . . . . . . . . . pr
r  n. Hence

d/n
∑ d  n.

Example (23)
Prove that m2  mm ∀m ∈ Z.

Solution :
Let m  p1

1 . p2
2 . . . . . . . . . pr

r ∴ m  p1
21 . p2

22 . . . . . . . . . pr
2r .

m2   p1
21 . p2

22 . . . . . . . . . pr
2r

m2  p1
21 . p2

22 . . . . . . . . . pr
2r1 − 1

p1
1 − 1

p2
. . . . . . . . . 1 − 1

pr


m2  p1
1 . p2

2 . . . . . . . . . pr
r  p1

1 . p2
2 . . . . . . . . . pr

r . 1 − 1
p1
1 − 1

p2
. . . . . . . . . 1 − 1

pr


m2  mm.
Example (24):

If a,n  1 and a − 1,n  1. Prove that
1  a  a2 . . . . . . . . . .an−1 ≡ 0modn.

Solution:
We have
an − 1  a − 1an−1  an−2 . . . . . . .a2  a  1

By Theorem 4.3.4 an − 1 ≡ 0modn
 a − 1an−1  an−2 . . . . . . .a2  a  1 ≡ 0modn
and since a − 1,n  1,
∴ an−1  an−2 . . . . . . .a2  a  1 ≡ 0modn,
or 1  a  a2 . . . . . . . .an−1 ≡ 0modn.
Example (25):
Find the unit digits of 7400 by use Euler’s Theorem.

Solution :
Since 7,10  1, therefore by use Euler’s Theorem,

710 ≡ 1mod10
74 ≡ 1mod10  74100 ≡ 1100mod10
∴ 7400 ≡ 1mod10  the unit digit of 7400 is 1.
Example (26):
Find the solution of the congruence 4x ≡ 7mod9.

Solution :
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x ≡ 49−1. 7mod9
x ≡ 45.7mod9
x ≡ 64.16.7mod9
x ≡ 1.7.7mod9
x ≡ 49mod9
x ≡ 4mod9
∴ x ≡ 4mod9 is the soletion of the given congurence.
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Chapter 5
Number-Theoretic Functions

Definition 5.1:
The Sum of divisors function, denoted by  , is defined by setting n equal to the

sum of all the
positive divisors of n.
Definition 5.2:
The number of divisors finction, denoted by  , is defined by setting n equal to the

number of
positive divisors of n.
Example (1) :

The positive divisors of 20 are
1 , 2 , 4 , 5 , 10 , 20.
20  1  2  4  5  10  20  42, and 20  6.
Note:
(1) If n is a prime number then its only positive divisors are 1, & n itself and so,
n  2, n  1  n.
for axample :
2  3  5  7 . . . . . . . 101  2.
(2)

d/n
∑ fd means ” Sum the values fd as d runs over all the positive divisors of

the positive integer ”.
for example :

d/20
∑ fd  f1  f2  f4  f5  f10  f20.

(3)With this understanding and may be expressed in the form :
(i) n 

d/n
∑ 1 ,

(ii) n 
d/n
∑ d and also n 

d/n
∑ n

d ,

 n 
d/n
∑ d 

d/n
∑ n

d , since if d is a divisor of n so is n
d .

Example (2) :
If n  10, then the four positive divisors of n are 1,2,5,10.
∴ 10 

d/10
∑ 1  1  1  1  1  4 ,

10 
d/10
∑ d  1  2  5  10  18,


d/10
∑ 10

d  10
1  10

2  10
5  10

10  10  5  2  1  18.

Theorem 5.3:
The function  is multiplicative i.e., if (m,n)1, then m.n  m.n .

Proof :
Let m  r and n  s .Then mn  rs.

Let the r divisors of m be 1,2, . . . . ,r ,and the s divisors of n be 1,2, . . . . ,s.
Clearly the rs numbers  iji  1,2, . . . , r, j  1,2, . . . , s are all divisors of mn.
Thus mn ≥ rs . We prove that the equality holds.
If m.n  rs, then there is a divisor d of mn which is different from the rs divisors

 ij of mn.
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Either d ∣ m or d ∣ m which means that either d is one of the  i or d is one of the j
and

consequently d is one of the  ij which is a contradiction, or d can be resolved into
2

factors dl and dll prime to each other such that one of them divides m and the other
divide n. Thus dl is one of the 1,2, . . . ,r and dll is one of the 1,2, . . . ,s and
so dldll is one of the  ij which is a contradiction.
Thus mn  rs and so mn  rs,
hence mn  mn.
Example (3):

Let m  4 & n  7 so (4,7)  1
The divisors of 4 are 1,2,4,
 4  3 and 7  2 since 7 is prime, ∴ 47  6.
The divisors of 28 are 1,2,4,7,14,28  28  6.
Thus 28  47.

Theorem 5.4: :
The function  is multiplicative i.e., if m,n  1, then mn  mn.
Let 1,2, . . . ,r be the divisors of m and 1,2, . . . ,s be the divisors of n.So
mn  1  2 . . .r1  2 . . .s.


i1

r
∑

j1

s
∑  ij.

Clearly all terms of  ij, i  1,2, . . . , r, j  1,2, . . . , s are divisors of mn and as we
have proved in

Theorem 5.3, these terms are the only divisors of mn .
Hence

i1

r
∑

j1

s
∑  ij  mn, thus mn  mn.

Example (4):
Take m9 and n4  (9,4)1.

9  1  3  9  13
4  1  2  4  7
94  13.7  91
9  4  36  1  2  3  4  6  9  12  18  36  91,
hence 36  94.
Note:
If (m,n)  1 , then mn ≠ mn as well as mn ≠ mn.
Verify this by taking m6 & n4.

Theorem 5.5:
If n  p1

k1p2
k2 . . . . . pr

kr is the prime factorization of n  1,then
a n  k1  1k2  1. . . . . kr  1, and

b n  p1
k11 − 1
p1 − 1  p2

k21 − 1
p2 − 1 . . . . pr

kr1 − 1
pr − 1 

i1

r
 pi

ki1 − 1
pi − 1

Proof :
Since pi is prime, therefore, the only divisors of pi

ki are 1, pi, pi
2, . . . . , pi

ki and
therefore

a pi
ki  ki  1.

Since  is multiplicative function and the pi are distinct primes therefore,
p1

k1p2
k2 . . . . . pr

kr  p1
k1.p2

k2. . . . .pr
kr,
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 k1  1k2  1. . . . . kr  1,


r

i1

 ki  1.

b pi
ki  1  pi  pi

2 . . . .pi
k  pi

ki1 − 1
pi − 1 .

Since  is multiplicative function, therefore
n  p1

k1p2
k2 . . . . . pr

kr  p1
k1.p2

k2. . . . .pr
kr

 p1
k11 − 1
p1 − 1  p2

k21 − 1
p2 − 1 . . . . pr

kr1 − 1
pr − 1


i1

r
 pi

ki1 − 1
pi − 1

Example (5):
(i) If n  72 2332,then

n  72  2332
 2332
 3  12  1
 4.3  12

n  72  2332
 2332
 24 − 1

2 − 1 . 32 − 1
3 − 1

 15.13  195.
(ii) If n  180  2232.51,then
n  180  223251

 223251
 2  12  11  1
 3.3.2  18.

n  180  223251
 223251
 23 − 1

2 − 1 . 32 − 1
3 − 1 . 52 − 1

5 − 1
 7.13.6  546.

Example (6):

Prove that n is odd if n is a square.

Solution :
Let n  m2  p1

1p2
2 . . . . . pr

r  p1
21p2

22 . . . . . pr
2r .

∴ n  21  122  1. . . . . . 2r  1,
whatever positive integral value may be of  i, 2 i  1 is always odd and so the

product
21  122  1. . . . . . 2r  1 is odd .So n is odd.

Theorem 5.6:

d/n
 d  n1/2n.

Proof :
Let d denote an arbitrary positive divisor of n,so that n dd/ for some d/ . As d
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ranges
over all n positive divisors of n , n such equation occurs.
Multiplying these together we get

nn 
d/n
 d

d//n

 d/

but as d runs through the divisors of n, so does d/,
hence

d/n
 d 

d//n

 d/.

Thus nn  
d/n
 d2.

Or equivalently
nn 

d/n
 d.

i.e., n1/2n 
d/n
 d.

Example (7):
Take n  20.

Divisors of 20 are:1,2,4,5,10,20
∴ 20  6

d/n
 d  12451020  8000

Also
201/220  201/26

 203  8000
Thus

d/n
 d 201/220.

Definition 5.7:
The Möbius function  named after August Ferdnand Möbius is the arithmetical

function
defined as follows:

n 

1 if n  1

−1s if
n is square free with prime factorization

n  p1p2. . . . . . . ps

0 if
n has square factor larger than 1,

i. e. if n  1,p2 ∣ n for some prime p

Example (8):
1  1, 2  1, 3  −1, 4  0, 5  −1,
6  1, 7  −1, 8  0, 9  0, 10  1
30  −13  −1, 525  0.

Theorem 5.8:

The function  is multiplicative, i.e., if (m,n)  1,
then mn  m.n.
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Proof :
If one of the two numbers is equal to, then the Theorem is true.

If one of the numbers m,n is divisible by the square of a prime , then the theorem is
true.

If m  p1p2. . . . . . . pr, n  q1q2. . . . . . . . . . qs.
and pi, qi are distinct primes, then mn  −1rs  −1r−1s  m.n.

Theorem 5.9:
For each position integer n ≥ 1

d/n
∑ d 

1 if n  1
0 if n  1

Where d runs through the divisors of n.
Example (9):
Consider n  10 , the divisors of 10 are : 1, 2 , 5 ,10.

d/10
∑ d  1  2  5  10,

 1  −1  −1  1  0.
Theorem 5.10:

If f is a multiplicative arithmetic function defined by the relation
Fn 

d/n
∑ fd. Then F is also multiplicative.

Proof :
Suppose that (m,n)1 , if d1 ∣m and d2 ∣n , then (d1,d2)1,

and as d1 and d2 run through all the positive divisors of m and n respectively d d1d2
runs

through all positive divisors of mn.
Hence

Fmn 
d/mn
∑ fd



d1/m
d2/n

∑ fd1fd2


d1/m
∑ fd1

d2/n
∑ fd2,

 Fm. Fn.
Example (10):

Show that F(60)F(4)F(15).
Each of the divisors of 60 may be written as the product of a divisor of 4 and a divisor

of 15
in the following way:
Divisors of 60 are :
1 ,2 ,3 ,4 ,5 ,6 ,10 ,12 ,15 ,20 ,30 ,60,
11.1 , 22.1 , 31.3 ,44.1 ,51.5 , 62.3 ,102.5 , 12 4.3 , 15 1.15 , 20 4.5 , 30
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2.15 ,60 4.15
( In each product, the first factor is a divisor of 4 and the second is a divisor of 15).
Hence
F(60)f(1)f(2)f(3)f(4)f(5) f(6)f(10)f(12)f(15)f(20) f(30)f(60)
 f(1.1)f(2.1)f(1.3)f(4.1)f(1.5) f(2.3)f(2.5)f(4.3)f(1.15)f(4.5)

f(2.15)f(4.15)
f(1)f(1)f(2)f(1)f(1)f(3)f(4)f(1)f(1)f(5)

f(2)f(3)f(2)f(5)f(4)f(3)f(1)f(15)f(4)f(5) f(2)f(15)f(4)f(15)
(f(1)  f(2)  f(4)) (f(1)f(3)f(5)f(15))
F(4) F(15).
The Bracket Function ( The greatest integer Function)

Definition 5.11:
For an arbitrary real number x we denote by [x] the largest integer less than or equal to

x , that is [x] is the
unique integer satisfying x-1  [x] ≤ x.
Example (11):

5
2  2 , 13

3 4 , 4  4 , −3  -3 ,
−7
2  −4,   3, −  −4, 2

7  0.
It is clear that any real number x can be written in the from,
x[x] , 0 ≤  1.
An interesting question is to ask , how many times a particular prime p appears in n!.
Example (12):

If p 3 , n  9 then
9!1.2.3.4.5.6.7.8.9
1.2 .3.2.2.5.2.3.7.2.2.2.3.3
27.34. 51. 71.
So that the exact power of 3 which divides 9! is 4.
It is better to have a formula that gives this without writing n! in the standard from.
This is by the next theorem.

Theorem 5.12:
If n is a positive integer and p a prime, then the highest power of p which divides n!

is

k1



∑ n
pk  n

p  n
p2  n

p3 . . . . . . . . . . .

Corollary 5.13:
If p1, p2, . . . . . . . . . . . , pr are the primes occurring in the standard from of n! ,then

n! 
r

i1

 pi
k1



∑ n
pi

k
.

Example (12):
Let n  20 , p3

20! 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.
We see that

62



3,6,9,12,15,18 are multiples of 3 and they are 6  [20/3] in numbers.
9, 18 are multiples of 32 so 2  20

32 in numbers.

Since 33  20  0  20
33 and so it stops.

Thus the highest power of 3 that divides 20! equals,
20
3  20

3  62  8,
i .e., 38 ∣ 20!.
Example (13) :
Find the number of Zeros with which the decimal representation of 50! terminates.

Solution :
This is equivalent to determine the number of times 10 enters into the product 50! .
We find the exponents of 2 & 5 ( 2510 ) in the prime factorization of 50! , and then

to
select the smaller figure.
By direct calculations we see that

50
2  50

22  50
23  50

24  50
25 . . . . .  251263100...47.

Thus the highest power of 2 dividing 50! is 47.
Similarly

50
5  50

52  10  2  12,
so the highest power of 5 dividing 50! is 12.
This means that the decimal representation of 50! will have
min(12,47)  12 zeros.

Theorem 5.14:

If a & b are arbitrary real numbers , then [ab] ≥ [a][b] .
Example (14):

i) let a  20
3  6 2

3 , b  11
4  2 3

4 .

Then ab  6 2
3 2 3

4  9 5
12

∴ [ab]  9.
[a]  6, [b]  2 , [a][b]  628
∴[ab]  [a][b].
ii) Let a  2 1

4 , b  3 1
2 , ∴ ab  5 3

4
So [a]  2 , [b]  3 , [ab]  5.
Hence [ab]  [a][b] .

Theorem 5.15:
If n and r are positive integers with 1 ≤ r  n, then the binomial coefficient

n
r   n!

r!n − r! , is also an integer.

Corollary 5.16:
For a positive integer r , the product of any r consecutive positive integers is divisible
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by r ! .
Proof :

The product of r consecutive positive integers, the largest of which is n is:
n(n-1)(n-2).....(n-r1).
Now

n(n-1)(n-2)......(n-r1)   n!
r!n − r!  r!.

Since n!
r!n − r!  A ∈Z , therefore

n(n-1)(n-2).........(n-r1)A r!.
So r!∣ n(n-1)(n-2).(n-r1)
.
Example (3):

Take n  10, r  3, so n-r  7.

n
r    n!

r!n − r!  
10
3   10!

3!7! 

 28.34. 52. 71

25.33. 51. 71  23.3.5.7 ∈ Z.
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Chapter 6
Quadratic Residues

Definition 6.1 :
If p is an odd prime, we say that the integer a is a quadratic residue of p if (a ,p)1

and the congruence
x2 ≡ a (mod p) has a solution .If the congruence x2 ≡ a (mod p) has no solution, we say
that a is quadratic nonresidne of p.
Example (1):
Consider the case of the prime p 13. To find out how many of the integer 1, 2, 3,, 12

are quadratic
residues of 13 ,we must know which of the congruences,

x2 ≡ a (mod 13),
are solvable when a runs through the set {1 , 2,....,12 }.
Modulo 13, the squares of the integers 1,2,3,....,12 are

12 ≡ 122 ≡ 1 (mod 13)
22 ≡ 112 ≡ 4 (mod 13)
32 ≡ 102 ≡ 9 (mod 13)
42 ≡ 92 ≡ 3 (mod 13)
52 ≡ 82 ≡12 (mod 13)
62 ≡ 72 ≡10 (mod 13)

1 , 3 , 4 , 9 , 10 , 12 are the quadratic residues of 13 while the nonresidues are 2 , 5 , 6,
7, 8 ,11.

Observe that integers between 1 and 12 are divided equally among the quadratic
residues and nonresidues.
Lemma 6.2:

Let p be an odd prime and a an integer not divisible by p.Then the congruence x2 ≡ a
(mod p),

has either no solution or exactly two incongruent solutions modulo p.
Theorem 6.3:

If p is an odd prime, then there are exactly (p-1)/2 quadratic residues of p and (p-1)/2
quadratic

nonresidues of p among the integers 1 , 2 ,...., p-1.
Proof :

To find all the quadratic residues of p among the integers 1, 2,....., p-1 ,we compute the
least positive residues modulo p, of the squares of the integers 1, 2,...,p-1.
Since there are p -1 squares to consider and since each congruence x2 ≡ a (mod p) has

either
zero or two solutions, there must be exactly (p-1)/2 quadratic residues of p
among the integers 1, 2,....,p-1.The remaining
(p-1)-(p-1)/2  ( p-1)/2 positive integers less than p-1 are quadratic nonresidues of p.

Definition 6.4:
Let p be an odd prime and a an integer not divisible by p. The Legendre symbol

a
p is defined by

a
p 

1 if a is a quadratic residue of p
−1 if a is a quadratic nonresidue of p
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This symbol is named after the French mathematician Adrien - Marie Legendre.
Example (2):
The previous example shows that the legendre symbol a

p , a  1 ,2 ,...,12 have the
following values:

1
13  3

13  4
13  9

13  10
13  12

13  1,

2
13  5

13  6
13  7

13  8
13  11

13  −1.

Theorem 6.5 :
Euler’s criterion

Let p be an odd prime and let a be a positive integer not divisible by p.
Then a

p ≡ ap−1/2 (mod p).
Proof :

First assume that a
p  1, then the congruence x2 ≡ a (mod p) has a solution say

xx0.
Using F.L.T ,we see that,
ap−1/2 ≡ x0

2p−1/2 ≡ 1 (mod p).
Hence, if a

p  1, we know that a
p ≡ ap−1/2 (mod p).

Now consider the case where a
p  −1 , then the congruence x2 ≡ a (mod p) has no

solutions.
By Theorem 3.4. for each integer i such that 1≤ i ≤ p-1, there is a unique integer j with
1 ≤ j ≤ p-1 , such that ij ≡ a (mod p).
Furthermore since the congruence x2 ≡ a (mod p),
has no solution , we know that i ≠ j . Thus we can group the integers 1, 2,....,p-1 into

(p-1)/2
pairs each with product congruent to a. Multiplying these pairs together we find that
(p-1)! ≡ ap−1/2 (mod p).
Since Wilsons Theorem tells us that (p-1)! ≡ -1 (mod p). So
-1 ≡ ap−1/2 (mod p).
So we have a

p ≡ ap−1/2 (mod p).
Example (3):
Let p  23 and a  5 .Since 511 ≡ -1 (mod 23),
Euler’s criterion tells us that 5

23  -1 , so 5 is a quadratic nonresidues of 23.

Corollary 6.6 :
Let p be an odd prime and ( a,p )  1, then a is a quadrate residues or nonresidues of

p according as

ap−1/2 ≡ 1 (mod p) or ap−1/2 ≡ −1 (mod p).
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Example (4):
In the case p  13, we find that

213−1/2  26  64 ≡ 12 ≡ −1 (mod 13).
So 2 is a quadratic nonresidue of 13.
Since

313−1/2  36  272 ≡ 12 ≡ 1 (mod 13),
so 3 is a quadratic residue of 13 , and so the congruence x² ≡ 3 (mod 13) is solvable,
in fact its two incongruent solution are x ≡ 4 and 9 (mod 13).

Theorem 6.7 :
Let p be an odd prime and a and b are integers not divisible by p , then
(i) If a ≡ b (mod p) then a

p  b
p .

(ii) a
p

b
p  ab

p .

(iii) a2
p  1.

Proof :
(i) If a ≡ b (mod p) , then x2 ≡ a (mod p) has a solution iff x2 ≡ b (mod p) has a solution

,
hence a

p  b
p .

(ii) By Euler,s criterion we know that
a
p ≡ ap−1/2 (mod p), b

p  bp−1/2 (mod p).

ab
p ≡ (ab)p−1/2 (mod p).

Hence a
p

b
p ≡ ap−1/2 .bp−1/2

≡ abp−1/2 ≡ ab
p (mod p).

Since the only possible values of a legendre symbol are 1 , we conclude that
a
p

b
p  ab

p .

(iii) Since a
p   1 from befor (ii) it follows that

a2
p  a

p
a
p 1.

Corollary 6.8:
If p is an odd prime , then

−1
p 

1 if p ≡ 1mod4
−1 if p ≡ −1mod4

Proof :
By Euler,s criterion we know that
−1
p ≡ −1p−1/2 ( mod p),

if p ≡ 1 (mod 4 ), then p  4k1 for some integer k , thus
(-1)p−1/2  −14k1−1/2  −12k  1, so that,so that −1

p  1.
if p ≡ 1 (mod 4) , then p  4k3 for some integer k ,
thus

(-1)p−1/2 (-1)4k3−1/2 (-1)2k1/2  −1,
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so that −1
p  -1.

Example (5):
Show that the congruence x2 ≡ -38 ( mod 13 ) is solvable.

Solution :

This can be done by evaluating the symbol −38
13

−38
13  −1

13 . 38
13  1 38

13  38
13

since 38 ≡ 12 (mod13) 
38
13  12

13  3.22

13  3
13

22

13  3
13

3
13 ≡ 313−1/2 ≡ 36 ≡ 272 ≡ 12 ≡ 1 mod13,

hence 3
13  1 i.e., −38

13  1 , so x2 ≡ -38 ( mod 13 ), admit solution.

Lemma 6.9:
Gauss Lemma.

Let p be an odd prime and a an integer with (a, p)1.
If s is the number of least positive residues of the integers a,2a,3a,..., ,( p − 1

2 ) a, that
are

greater than p/2, then a
p  −1s.

Example (6):
Let a  5 and p  11 , find 5

11 by Gauss lemma .

Solution :
We compute the L.P.Residues of 1.5 , 2.5, 3.5, 4.5 and 5.5 . These are 5 ,

10 , 4 , 9
and 3 respectively.
Since exactly two of these are greater than 11/2 they are 9 , 10 so by Gauss lemma

5
11  −12  1.

Theorem 6.10 :
If p is an odd prime , then 2

p  −1p2−1/8.

Hence 2 is a quadratic residue of all primes p ≡ 1 ( mod 8) and a quadratic nonresidue
of all

primes p ≡ 3 ( mod 8 ).
Or in another way we say that if p is an odd prime , then

2
p 

1 if p ≡ 1mod8 or p ≡ 7mod8
−1 if p ≡ 3mod8 or p ≡ 5mod8

.

Example (7):
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By theorem above we see that
2
7  2

17  2
23  2

31  1,
while

2
3  2

5  2
11  2

13  2
19  2

29  −1.
Example (8):

Evaluate 317
11 .

Solution :
Since 317 ≡ 9mod11 by part (i) in Theorem 6.7

317
11  9

11  32

11  1, (by part (iii) of Theorem 6.7).

Example (9):
Evaluate 89

13 .

89 ≡ −2mod13  89
13  −2

13  −1
13

2
13 .

Since 13 ≡ 1 ( mod 4 ) by corollary 6.8 −1
13  1.

Since 13 ≡ -5 ( mod 8 ) by Theorem 6.10 2
13  −1.

Consequently 89
13  −1.

The Law of Quadrate Reciprocity

Theorem 6.11

Let p and q be odd primes , then p
q

q
p  −1


p − 1

2
p − 1

2 
.

Corollary 6.12:
If p and q are distinct odd primes , then

p
q

q
p 

1 if p ≡ 1mod4 or q ≡ 1mod4 or both
−1 if p ≡ q ≡ 3mod4

since the only possible values of p
q or q

p are 1 , we see that

p
q 

p
q if p ≡ 1mod4 or q ≡ 1mod4 (or both)
q
p if p ≡ q ≡ 3 mod4

This means that if p and q are odd primes, then p
q  q

p unless both p and q
are

congruent to 3 modulo 4,
and in that case p

q  − q
p .

Example (10):
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Show that x2 ≡ 13mod17 is solvable.
Solution :

Let p  7 and q  17, since p ≡ q ≡ 1 ( mod 4 ) then the law of the quadratic reciprocity
shows that

13
17  17

13 ,

since 17 ≡ 4mod13 by Theorem 6.7 17
13  4

13  22

13  1.

Thus 13
17  1  x2 ≡ 13mod17 is solvable.

Example (11):
Let p  7 and q  19, since p ≡ q ≡ 3 (mod 4),then the law of the quadratic eciprocity

show that

7
19  − 19

7

− 19
7  − 5

7 since 19 ≡ 5mod7.

since 5 ≡ 1mod4, by law of the quadratic eciprocity we have 5
7  7

5 .
Thus

7
19  − 19

7  − 5
7  − 7

5  − 2
5 (since 7 ≡ 2mod5)

 −−1  1 (since 5 ≡ 5mod8) .
Example (12) :

Calculate 713
1009 (1009 is a prime)

Solution :
Factor 713  23 . 31

713
1009  23.31

1009  23
1009

31
1009

using the law of reciprocity we have 1009 ≡ 1 (mod 4).

23
1009  1009

23
31

1009  1009
31

1009
23  20

23
1009
31  17

31
20
23  22.5

23  5
23

by the law of quadratic reciprocity 5 ≡ 1 ( mod 4 )
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5
23  23

5  3
5  5

3  2
3  −1, thus 23

1009  −1,
similarly

17
31  31

17  14
17  2

17
7
17

 7
17  17

7  3
7  − 7

3  − 4
3  − 22

3  −1

consequently 31
1009  −1.

therefore 713
1009  −1−1  1.
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