
Chapter 1
1.1 Divisibiliy

By Natural numbers we mean the numbers 1, 2,3,......
Integers are Natural numbers, 0 and the negative numbers ...-3,-2,-1. The set of integers

will be denoted by Z such that
Z  {....,-3,-2,-1, 0, 1, 2, 3,....}.

Definition 1.1.1
If a and b are Integers with a ≠ 0, we say that a divides b

if there is an integer c such that bac.
If a divides b, then a is a divisor or factor of b.
If a divides b we write a∣b , if a doesn’t divide b then a ∤ b.
Example (1):
The following illustrate the concept of divisibility of integers :

13∣182, -5∣30, 6 ∤ 44, 7 ∤ 50 and 17∣0.
Example (2):

The divisors of 6 are 1, 2, 3, 6.
The divisors of 17 are 1, 17..
The divisors of 100 are 1, 2, 4, 5, 10, 20,

25, 50 and 100.
Note that:
Every non-zero integer is a divisor of 0 and 1 is a divisor of every
integer or equivalently every integer is a multiple of 1.



1.3 The Euclidean Algorithm
The gcd of two integers can be found by listing all ve divisors
and picking out the largest one common to each , but this is not
suitable for large numbers.
A more efficient process involving repeated application of the division algorithm goes

by the name of
Euclidean Algorithm . The E.A. may be described as follows :
Let a , b be two integers whose gcd is desired , we can find unique integers q1 , r1 such

that
a  bq1  r1 0 ≤ r1  b

if r1 ≠ 0 we divide b by r1 so
b  r1 q2  r2 0 ≤ r2  r1.

if r2 ≠ 0 we divide r1 by r2 so
r1  r2 q3  r3 0 ≤ r3  r2.

Similarly if r3 ≠0
r2  r3 q4  r4 0 ≤ r4  r3
.
.
.
rk−2  rk−1 qk  rk 0  rk  rk−1
rk−1  rk qk1  0 rk1  0.
By the repeated application of Theorem 1.2.5 , we can show that rk , the last non-zero

reminder which appears in this manner is equal to (a , b),



3(-6)  6.6  18
3(10)  6(-2)  18.
where as the equation 2x  10y  17 which has no solution .
so its reasonable to ask about the conditions under which a
solution is possible . The answer is given by the following theorem .

Theorem 1.5.2:
Let a , b be integers with d  (a , b) . The equation ax  by  c has no integral solution if

d ∤c.
If d∣c then there are infinitely many integral solutions . Moreover , if x  x0 , y  y0
is a particular solution of the equation , then all solutions are given by
x  x0  (b/d)n , y  y0 - (a/d)n, where n is an integer .

Proof :
Assume that x and y are integers such that ax by  c . Then since d∣a and d∣b so d∣c .
Hence if d∤c , there are no integral solutions of the equation.
Assume that d\c. Since (a,b)d ∃ s,t Z, such that
d  as  bt .......(*)
Since d∣c there is e ∈ Z such that de  c.
Multiply both sides of (*) by e we get
c  de  (as  bt) e  a(se)  b(te).



Let k  4n  1, k/ 4m  1
Then kk/  (4n  1) (4m  1)

 16 mn  4n  4m  1
 4 (4mn  n  m)  1
 4L  1 , where L  4mn  n  m.

Which is of the desired form.
Theorem 2.2.5:

There is an infinite number of primes of the form 4n  3.
Proof :

In anticipation of a contradiction , let us assume that there exist only finitely many
primes of the form 4n3 , call them q1, q2, . . . . . . , qs. Consider the positive integer

N  4 q1 q2. . . . . . . qs − 1  4 (q1 q2. . . . . . . qs − 1)  3,
and let N r1.r2. . . . rt be its prime factorization .
Because N is an odd integer, we have rk ≠ 2 for all k , so that
each rk is either of the form 4n1 or 4n3.By the lemma above the
product of any number of primes of the form 4n  1 is again an
integer in this type for N take the form 4n3 as its clearly dose,
N must contain at least one prime factor ri of the form
4n3. But ri cannot be found among the listing q1,q2, . . . . . , qs , for this would lead to
a contradiction that ri ∣1 .
The only possible conculosion is that there are infinitly many primes of the form 4n3 .

Theorem 2.2.6: ( Dirichlet )
If a and b are relatively prime positive integers i.e (a, b)  1 , then the arithmetic

progression
a, a  b, a  2b, a  3 b
contains infinitely many primes.
Example(6):
(3, 4)  1 , therefore the arithmetic progression is
3, 3  4 , 3 2(4) ,3 3(4) , 3  4(4), 3  5(4),...........
i.e, the arithmetic progression is 3, 7, 11, 15, 19, 23, .....
contains infinitely many primes all of them are of the form 4n  3.
Similarly (1, 4)  1 therefore the arithmetic progression is :
1, 1  (4) , 1 2(4), 1  3(4), 1  4(4), 1  5(4) ,......... ,i.e. 1, 5, 9, 13, 17, 21,......
contains infinite number of primes of the form 4n  1 .

Theorem 2.2.7:
No Arithmetic progression of the form a, a  b , a  2b,......, contains only primes.

Proof :
Let a  nb  p where p is a prime.
If we put nk  n  kp, k  1, 2, 3,..., then the nk

th term in the progression is
a  nk b  a  (n  kp) b



720  24.32. 5  7201 − 1
2 1 −

1
3 1 −

1
5   192

450  2.32.52  4501 − 1
2 1 −

1
3 1 −

1
5   120

Example (22)
If f is an arithmatic function ,then

d/12
∑ fd  f1  f2  f3  f4  f6  f12

for example

d/12
∑ d2  12  22  32  42  62  122

 1  4  9  16  36  144  210.
The following result which states that n is the sum of values of the phi-function at all

the
positive divisors of n will be useful.

Theorem 4.3.13

Let n be positive integer,then
d/n
∑ d  n.

Let n  p, then the divisor of p are ,1,p,p2, . . . . , p. Therefore

d/n
∑ d  1  p  p2 . . . . .p

 1  p − 1  p2 − p . . . . . . . .p − p−1
 p  n.

Hence the result is true for n  p.


