## Chapter 1 <br> 1.1 Divisibiliy

By Natural numbers we mean the numbers 1, 2,3,......
Integers are Natural numbers, 0 and the negative numbers $\ldots-3,-2,-1$. The set of integers
will be denoted by Z such that
$\mathbf{Z}=\{\ldots .,-3,-2,-1,0,1,2,3, \ldots$.$\} .$

## Definition 1.1.1

If a and b are Integers with $\mathrm{a} \neq 0$, we say that a divides b if there is an integer c such that $\mathrm{b}=\mathrm{ac}$.
If a divides $b$, then $a$ is a divisor or factor of $b$.
If a divides b we write $\mathrm{a} \mid \mathrm{b}$, if a doesn't divide b then $\mathrm{a} \chi \mathrm{b}$.
Example (1):
The following illustrate the concept of divisibility of integers :
$13|182,-5| 30,6 \nmid 44,7 \times 50$ and $17 \mid 0$.
Example (2):
The divisors of 6 are $\pm 1, \pm 2, \pm 3, \pm 6$.
The divisors of 17 are $\pm 1, \pm 17$..
The divisors of 100 are $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$,
$\pm 25, \pm 50$ and $\pm 100$.

## Note that:

Every non-zero integer is a divisor of 0 and 1 is a divisor of every integer or equivalently every integer is a multiple of 1 .

### 1.3 The Euclidean Algorithm

The gcd of two integers can be found by listing all + ve divisors and picking out the largest one common to each , but this is not suitable for large numbers.
A more efficient process involving repeated application of the division algorithm goes by the name of

Euclidean Algorithm . The E.A. may be described as follows :
Let a , b be two integers whose gcd is desired, we can find unique integers $\mathrm{q}_{1}$, $\mathrm{r}_{1}$ such that

$$
\mathrm{a}=\mathrm{bq}_{1}+\mathrm{r}_{1} \quad 0 \leq \mathrm{r}_{1}<\mathrm{b}
$$

if $\mathrm{r}_{1} \neq 0$ we divide b by $\mathrm{r}_{1}$ so
$b=r_{1} q_{2}+r_{2} \quad 0 \leq r_{2}<r_{1}$.
if $r_{2} \neq 0$ we divide $r_{1}$ by $r_{2}$ so
$r_{1}=r_{2} q_{3}+r_{3} \quad 0 \leq r_{3}<r_{2}$.
Similarly if $\mathrm{r}_{3} \neq 0$
$r_{2}=r_{3} q_{4}+r_{4} \quad 0 \leq r_{4}<r_{3}$
.
-
$\mathrm{r}_{k-2}=\mathrm{r}_{k-1} \mathrm{q}_{k}+\mathrm{r}_{k} \quad 0<\mathrm{r}_{k}<\mathrm{r}_{k-1}$
$\mathrm{r}_{k-1}=\mathrm{r}_{k} \mathrm{q}_{k+1}+0 \quad \mathrm{r}_{k+1}=0$.
By the repeated application of Theorem 1.2.5, we can show that $\mathrm{r}_{k}$, the last non-zero reminder which appears in this manner is equal to (a,b),
$3(-6)+6.6=18$
$3(10)+6(-2)=18$.
where as the equation $2 \mathrm{x}+10 \mathrm{y}=17$ which has no solution . so its reasonable to ask about the conditions under which a solution is possible. The answer is given by the following theorem .

## Theorem 1.5.2:

Let $\mathrm{a}, \mathrm{b}$ be integers with $\mathrm{d}=(\mathrm{a}, \mathrm{b})$. The equation $\mathrm{ax}+\mathrm{by}=\mathrm{c}$ has no integral solution if $\mathrm{d} X \mathrm{c}$.

If $d \mid c$ then there are infinitely many integral solutions. Moreover, if $x=x_{0}, y=y_{0}$ is a particular solution of the equation, then all solutions are given by $\mathrm{x}=\mathrm{x}_{0}+(\mathrm{b} / \mathrm{d}) \mathrm{n}, \mathrm{y}=\mathrm{y}_{0}-(\mathrm{a} / \mathrm{d}) \mathrm{n}$, where n is an integer.

## Proof :

Assume that x and y are integers such that $\mathrm{ax}+\mathrm{by}=\mathrm{c}$. Then since $\mathrm{d} \mid \mathrm{a}$ and $\mathrm{d} \mid \mathrm{b}$ so $\mathrm{d} \mid \mathrm{c}$.
Hence if $\mathrm{d} \backslash \mathrm{c}$, there are no integral solutions of the equation.
Assume that d\c. Since (a,b)=d $\exists$ s,t Z, such that
$\mathrm{d}=\mathrm{as}+\mathrm{bt}$ $\qquad$ (*)
Since $d \mid c$ there is $e \in Z$ such that $d e=c$.
Multiply both sides of (*) by e we get
$c=d e=(a s+b t) e=a(s e)+b(t e)$.

$$
\begin{aligned}
& \text { Let } \mathrm{k}=4 \mathrm{n}+1, \quad \mathrm{k}^{\prime}=4 \mathrm{~m}+1 \\
& \text { Then } \quad \begin{aligned}
\mathrm{kk}^{\prime} & =(4 \mathrm{n}+1)(4 \mathrm{~m}+1) \\
& =16 \mathrm{mn}+4 \mathrm{n}+4 \mathrm{~m}+1 \\
& =4(4 \mathrm{mn}+\mathrm{n}+\mathrm{m})+1 \\
& =4 \mathrm{~L}+1, \quad \text { where } \mathrm{L}=4 \mathrm{mn}+\mathrm{n}+\mathrm{m} .
\end{aligned}
\end{aligned}
$$

Which is of the desired form.
Theorem 2.2.5:
There is an infinite number of primes of the form $4 n+3$.

## Proof :

In anticipation of a contradiction, let us assume that there exist only finitely many primes of the form $4 \mathrm{n}+3$, call them $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots \ldots, \mathrm{q}_{s}$. Consider the positive integer
$\mathrm{N}=4 \mathrm{q}_{1} \mathrm{q}_{2} \ldots \ldots . \mathrm{q}_{s}-1=4\left(\mathrm{q}_{1} \mathrm{q}_{2} \ldots \ldots . \mathrm{q}_{s}-1\right)+3$, and let $\mathrm{N}=\mathrm{r}_{1} . \mathrm{r}_{2} \ldots . \mathrm{r}_{t}$ be its prime factorization .
Because N is an odd integer, we have $\mathrm{r}_{k} \neq 2$ for all k , so that each $\mathrm{r}_{k}$ is either of the form $4 \mathrm{n}+1$ or $4 \mathrm{n}+3$. By the lemma above the product of any number of primes of the form $4 n+1$ is again an integer in this type for N take the form $4 \mathrm{n}+3$ as its clearly dose, N must contain at least one prime factor $\mathrm{r}_{i}$ of the form
$4 \mathrm{n}+3$. But $\mathrm{r}_{i}$ cannot be found among the listing $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots ., \mathrm{q}_{s}$, for this would lead to a contradiction that $\mathrm{r}_{i} \mid 1$.
The only possible conculosion is that there are infinitly many primes of the form $4 \mathrm{n}+3$.

## Theorem 2.2.6: (Dirichlet)

If a and b are relatively prime positive integers i.e $(\mathrm{a}, \mathrm{b})=1$, then the arithmetic progression
$a, a+b, a+2 b, a+3 b$
contains infinitely many primes.

## Example(6):

$(3,4)=1$, therefore the arithmetic progression is
$3,3+4,3+2(4), 3+3(4), 3+4(4), 3+5(4)$, $\qquad$
i.e, the arithmetic progression is $3,7,11,15,19,23, \ldots .$.
contains infinitely many primes all of them are of the form $4 n+3$.
Similarly $(1,4)=1$ therefore the arithmetic progression is :
$1,1+(4), 1+2(4), 1+3(4), 1+4(4), 1+5(4), \ldots \ldots \ldots .$. ,i.e. $1,5,9,13,17,21, \ldots \ldots$.
contains infinite number of primes of the form $4 n+1$.
Theorem 2.2.7:
No Arithmetic progression of the form $\mathrm{a}, \mathrm{a}+\mathrm{b}, \mathrm{a}+2 \mathrm{~b}, \ldots . . .$, , contains only primes.

## Proof :

Let $\mathrm{a}+\mathrm{nb}=\mathrm{p}$ where p is a prime.
If we put $\mathrm{n}_{k}=\mathrm{n}+\mathrm{kp}, \quad \mathrm{k}=1,2,3, \ldots$, then the $\mathrm{n} \frac{\underline{t h}}{k}$ term in the progression is $\mathrm{a}+\mathrm{n}_{k} \mathrm{~b}=\mathrm{a}+(\mathrm{n}+\mathrm{kp}) \mathrm{b}$
$\varphi(720)=\varphi\left(2^{4} \cdot 3^{2} .5\right)=720\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)=192$
$\varphi(450)=\varphi\left(2.3^{2} .5^{2}\right)=450\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)=120$
Example (22)
If $f$ is an arithmatic function ,then

$$
\sum_{d 12} f(d)=f(1)+f(2)+f(3)+f(4)+f(6)+f(12)
$$

for example

$$
\begin{aligned}
& \sum_{d 12} d^{2}=1^{2}+2^{2}+3^{2}+4^{2}+6^{2}+12^{2} \\
&=1+4+9+16+36+144=210
\end{aligned}
$$

The following result which states that n is the sum of values of the phi-function at all the
positive divisors of $n$ will be useful.

## Theorem 4.3.13

Let n be positive integer, then $\sum_{d / n} \varphi(d)=n$.
Let $\mathrm{n}=p^{\alpha}$, then the divisor of $p^{\alpha}$ are $, 1, p, p^{2}, \ldots, p^{\alpha}$. Therefore

$$
\begin{aligned}
\sum_{d / n} \varphi(d) & =\varphi(1)+\varphi(p)+\varphi\left(p^{2}\right)+\ldots .+\varphi\left(p^{\alpha}\right) \\
& =1+p-1+p^{2}-p+\ldots \ldots .+p^{\alpha}-p^{\alpha-1} \\
& =p^{\alpha}=n .
\end{aligned}
$$

Hence the result is true for $n=p^{\alpha}$.

